Across-subject offline decoding of motor imagery from MEG and EEG
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Authors
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
1-12
Series
Scientific Reports, Volume 8, issue 1
Abstract
Long calibration time hinders the feasibility of brain-computer interfaces (BCI). If other subjects' data were used for training the classifier, BCI-based neurofeedback practice could start without the initial calibration. Here, we compare methods for inter-subject decoding of left- vs. right-hand motor imagery (MI) from MEG and EEG. Six methods were tested on data involving MEG and EEG measurements of healthy participants. Inter-subject decoders were trained on subjects showing good within-subject accuracy, and tested on all subjects, including poor performers. Three methods were based on Common Spatial Patterns (CSP), and three others on logistic regression with l1 - or l2,1 -norm regularization. The decoding accuracy was evaluated using (1) MI and (2) passive movements (PM) for training, separately for MEG and EEG. With MI training, the best accuracies across subjects (mean 70.6% for MEG, 67.7% for EEG) were obtained using multi-task learning (MTL) with logistic regression and l2,1-norm regularization. MEGyielded slightly better average accuracies than EEG. With PM training, none of the inter-subject methods yielded above chance level (58.7%) accuracy. In conclusion, MTL and training with other subject's MI is efficient for inter-subject decoding of MI. Passive movements of other subjects are likely suboptimal for training the MI classifiers.Description
Keywords
Other note
Citation
Hanna-Leena , H & Lauri , P 2018 , ' Across-subject offline decoding of motor imagery from MEG and EEG ' Scientific Reports , vol 8 , no. 1 , 10087 , pp. 1-12 . DOI: 10.1038/s41598-018-28295-z