Tesla-Rapture: A Lightweight Gesture Recognition System from mmWave Radar Sparse Point Clouds
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2023-08
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
IEEE Transactions on Mobile Computing
Abstract
We present Tesla-Rapture, a gesture recognition system for sparse point clouds generated by mmWave Radars. State of the art gesture recognition models are either too resource consuming or not sufficiently accurate for the integration into real-life scenarios using wearable or constrained equipment such as IoT devices (e.g. Raspberry PI), XR hardware (e.g. HoloLens), or smart-phones. To tackle this issue, we have developed Tesla, a Message Passing Neural Network (MPNN) graph convolution approach for mmWave radar point clouds. The model outperforms the state of the art on three datasets in terms of accuracy while reducing the computational complexity and, hence, the execution time. In particular, the approach, is able to predict a gesture almost 8 times faster than the most accurate competitor. Our performance evaluation in different scenarios (environments, angles, distances) shows that Tesla generalizes well and improves the accuracy up to 20% in challenging scenarios, such as a through-wall setting and sensing at extreme angles. Utilizing Tesla, we develop Tesla-Rapture, a real-time implementation using a mmWave Radar on a Raspberry PI 4 and evaluate its accuracy and time-complexity. We also publish the source code, the trained models, and the implementation of the model for embedded devices.Description
Publisher Copyright: IEEE | openaire: EC/H2020/813999/EU//WINDMILL
Keywords
Gesture-recognition, Graph-convolution, Machine-learning, mmwave radar, Sensing
Other note
Citation
Salami, D, Hasibi, R, Palipana, S, Popovski, P, Michoel, T & Sigg, S 2023, ' Tesla-Rapture : A Lightweight Gesture Recognition System from mmWave Radar Sparse Point Clouds ', IEEE Transactions on Mobile Computing, vol. 22, no. 8, pp. 4946-4960 . https://doi.org/10.1109/TMC.2022.3153717