Moiré-enabled topological superconductivity in twisted bilayer graphene

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

8

Series

2D Materials, Volume 11, issue 3, pp. 1-8

Abstract

Twisted van der Waals materials have risen as highly tunable platforms for realizing unconventional superconductivity. Here we demonstrate how a topological superconducting state can be driven in a twisted graphene multilayer at a twist angle of approximately 1.6 degrees proximitized to other 2D materials. We show that an encapsulated twisted bilayer subject to induced Rashba spin–orbit coupling, s-wave superconductivity, and exchange field generates a topological superconducting state enabled by the moiré pattern. We demonstrate the emergence of a variety of topological states with different Chern numbers, that are highly tunable through doping, strain, and bias voltage. Our proposal does not depend on fine-tuning the twist angle, but solely on the emergence of moiré minibands and is applicable for twist angles between 1.3 and 3 degrees. Our results establish the potential of twisted graphene bilayers to create topological superconductivity without requiring ultraflat dispersions.

Description

Other note

Citation

Khosravian, M, Bascones, E & Lado, J 2024, 'Moiré-enabled topological superconductivity in twisted bilayer graphene', 2D Materials, vol. 11, no. 3, 035012, pp. 1-8. https://doi.org/10.1088/2053-1583/ad3b0c