Multi-node Training for StyleGAN2
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Loppi, Niki | en_US |
dc.contributor.author | Kynkäänniemi, Tuomas | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.editor | Del Bimbo, Alberto | en_US |
dc.contributor.editor | Cucchiara, Rita | en_US |
dc.contributor.editor | Sclaroff, Stan | en_US |
dc.contributor.editor | Farinella, Giovanni Maria | en_US |
dc.contributor.editor | Mei, Tao | en_US |
dc.contributor.editor | Bertini, Marco | en_US |
dc.contributor.editor | Escalante, Hugo Jair | en_US |
dc.contributor.editor | Vezzani, Roberto | en_US |
dc.contributor.groupauthor | Professorship Lehtinen Jaakko | en |
dc.contributor.organization | NVIDIA AI Technology Center | en_US |
dc.date.accessioned | 2021-11-11T08:32:34Z | |
dc.date.available | 2021-11-11T08:32:34Z | |
dc.date.issued | 2021 | en_US |
dc.description | Publisher Copyright: © 2021, Springer Nature Switzerland AG. Copyright: Copyright 2021 Elsevier B.V., All rights reserved. | |
dc.description.abstract | StyleGAN2 is a Tensorflow-based Generative Adversarial Network (GAN) framework that represents the state-of-the-art in generative image modelling. The current release of StyleGAN2 implements multi-GPU training via Tensorflow’s device contexts which limits data parallelism to a single node. In this work, a data-parallel multi-node training capability is implemented in StyleGAN2 via Horovod which enables harnessing the compute capability of larger cluster architectures. We demonstrate that the new Horovod-based communication outperforms the previous context approach on a single node. Furthermore, we demonstrate that the multi-node training does not compromise the accuracy of StyleGAN2 for a constant effective batch size. Finally, we report strong and weak scaling of the new implementation up to 64 NVIDIA Tesla A100 GPUs distributed across eight NVIDIA DGX A100 nodes, demonstrating the utility of the approach at scale. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 8 | |
dc.format.extent | 677-684 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Loppi, N & Kynkäänniemi, T 2021, Multi-node Training for StyleGAN2 . in A Del Bimbo, R Cucchiara, S Sclaroff, G M Farinella, T Mei, M Bertini, H J Escalante & R Vezzani (eds), Pattern Recognition. ICPR International Workshops and Challenges, 2021, Proceedings . Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12661 LNCS, Springer, pp. 677-684, International Conference on Pattern Recognition, Milan, Italy, 10/01/2021 . https://doi.org/10.1007/978-3-030-68763-2_51 | en |
dc.identifier.doi | 10.1007/978-3-030-68763-2_51 | en_US |
dc.identifier.isbn | 9783030687625 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.other | PURE UUID: 80a4a864-6413-418a-96f8-7ca0a189b1e4 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/80a4a864-6413-418a-96f8-7ca0a189b1e4 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85104320857&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/74913528/SCI_Loppi_Multinode_StyleGAN2_icpr2020_workshop.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/110931 | |
dc.identifier.urn | URN:NBN:fi:aalto-2021111110102 | |
dc.language.iso | en | en |
dc.publisher | Springer | |
dc.relation.ispartof | International Conference on Pattern Recognition | en |
dc.relation.ispartofseries | Pattern Recognition. ICPR International Workshops and Challenges, 2021, Proceedings | en |
dc.relation.ispartofseries | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en |
dc.relation.ispartofseries | Volume 12661 LNCS | en |
dc.rights | openAccess | en |
dc.subject.keyword | GAN | en_US |
dc.subject.keyword | GPU | en_US |
dc.subject.keyword | Massively parallel architectures | en_US |
dc.subject.keyword | Multi-node training | en_US |
dc.subject.keyword | StyleGAN2 | en_US |
dc.title | Multi-node Training for StyleGAN2 | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | acceptedVersion |