Multi-node Training for StyleGAN2

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLoppi, Nikien_US
dc.contributor.authorKynkäänniemi, Tuomasen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorDel Bimbo, Albertoen_US
dc.contributor.editorCucchiara, Ritaen_US
dc.contributor.editorSclaroff, Stanen_US
dc.contributor.editorFarinella, Giovanni Mariaen_US
dc.contributor.editorMei, Taoen_US
dc.contributor.editorBertini, Marcoen_US
dc.contributor.editorEscalante, Hugo Jairen_US
dc.contributor.editorVezzani, Robertoen_US
dc.contributor.groupauthorProfessorship Lehtinen Jaakkoen
dc.contributor.organizationNVIDIA AI Technology Centeren_US
dc.date.accessioned2021-11-11T08:32:34Z
dc.date.available2021-11-11T08:32:34Z
dc.date.issued2021en_US
dc.descriptionPublisher Copyright: © 2021, Springer Nature Switzerland AG. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
dc.description.abstractStyleGAN2 is a Tensorflow-based Generative Adversarial Network (GAN) framework that represents the state-of-the-art in generative image modelling. The current release of StyleGAN2 implements multi-GPU training via Tensorflow’s device contexts which limits data parallelism to a single node. In this work, a data-parallel multi-node training capability is implemented in StyleGAN2 via Horovod which enables harnessing the compute capability of larger cluster architectures. We demonstrate that the new Horovod-based communication outperforms the previous context approach on a single node. Furthermore, we demonstrate that the multi-node training does not compromise the accuracy of StyleGAN2 for a constant effective batch size. Finally, we report strong and weak scaling of the new implementation up to 64 NVIDIA Tesla A100 GPUs distributed across eight NVIDIA DGX A100 nodes, demonstrating the utility of the approach at scale.en
dc.description.versionPeer revieweden
dc.format.extent8
dc.format.extent677-684
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLoppi, N & Kynkäänniemi, T 2021, Multi-node Training for StyleGAN2 . in A Del Bimbo, R Cucchiara, S Sclaroff, G M Farinella, T Mei, M Bertini, H J Escalante & R Vezzani (eds), Pattern Recognition. ICPR International Workshops and Challenges, 2021, Proceedings . Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12661 LNCS, Springer, pp. 677-684, International Conference on Pattern Recognition, Milan, Italy, 10/01/2021 . https://doi.org/10.1007/978-3-030-68763-2_51en
dc.identifier.doi10.1007/978-3-030-68763-2_51en_US
dc.identifier.isbn9783030687625
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.otherPURE UUID: 80a4a864-6413-418a-96f8-7ca0a189b1e4en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/80a4a864-6413-418a-96f8-7ca0a189b1e4en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85104320857&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/74913528/SCI_Loppi_Multinode_StyleGAN2_icpr2020_workshop.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/110931
dc.identifier.urnURN:NBN:fi:aalto-2021111110102
dc.language.isoenen
dc.publisherSpringer
dc.relation.ispartofInternational Conference on Pattern Recognitionen
dc.relation.ispartofseriesPattern Recognition. ICPR International Workshops and Challenges, 2021, Proceedingsen
dc.relation.ispartofseriesLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.relation.ispartofseriesVolume 12661 LNCSen
dc.rightsopenAccessen
dc.subject.keywordGANen_US
dc.subject.keywordGPUen_US
dc.subject.keywordMassively parallel architecturesen_US
dc.subject.keywordMulti-node trainingen_US
dc.subject.keywordStyleGAN2en_US
dc.titleMulti-node Training for StyleGAN2en
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files