Tensor decompositions in wireless communications and mimo radar

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorChen, Hongyangen_US
dc.contributor.authorAhmad, Fauziaen_US
dc.contributor.authorVorobyov, Sergiyen_US
dc.contributor.authorPorikli, Fatihen_US
dc.contributor.departmentDepartment of Signal Processing and Acousticsen
dc.contributor.groupauthorSergiy Vorobyov Groupen
dc.contributor.organizationResearch Center for Intelligent Networken_US
dc.contributor.organizationTemple Universityen_US
dc.contributor.organizationAustralian National Universityen_US
dc.date.accessioned2021-03-31T06:17:16Z
dc.date.available2021-03-31T06:17:16Z
dc.date.issued2021-04en_US
dc.descriptionPublisher Copyright: IEEE Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
dc.description.abstractThe emergence of big data and the multidimensional nature of wireless communication signals present significant opportunities for exploiting the versatility of tensor decompositions in associated data analysis and signal processing. The uniqueness of tensor decompositions, unlike matrix-based methods, can be guaranteed under very mild and natural conditions. Harnessing the power of multilinear algebra through tensor analysis in wireless signal processing, channel modeling, and parametric channel estimation provides greater flexibility in the choice of constraints on data properties and permits extraction of more general latent data components than matrix-based methods.Tensor analysis has also found applications in Multiple-Input Multiple-Output (MIMO) radar because of its ability to exploit the inherent higher-dimensional signal structures therein. In this paper, we provide a broad overview of tensor analysis in wireless communications and MIMO radar. More specifically, we cover topics including basic tensor operations, common tensor decompositions via canonical polyadic and Tucker factorization models, wireless communications applications ranging from blind symbol recovery to channel parameter estimation, and transmit beamspace design and target parameter estimation in MIMO radar.en
dc.description.versionPeer revieweden
dc.format.extent16
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationChen, H, Ahmad, F, Vorobyov, S & Porikli, F 2021, ' Tensor decompositions in wireless communications and mimo radar ', IEEE Journal on Selected Topics in Signal Processing, vol. 15, no. 3, 9362250, pp. 438-453 . https://doi.org/10.1109/JSTSP.2021.3061937en
dc.identifier.doi10.1109/JSTSP.2021.3061937en_US
dc.identifier.issn1932-4553
dc.identifier.issn1941-0484
dc.identifier.otherPURE UUID: c1c57256-bc24-42fa-ba4e-514af9ee4d03en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/c1c57256-bc24-42fa-ba4e-514af9ee4d03en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85101779228&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/61232069/ELEC_Chen_Overview_of_tensor_decompositions_in_WC.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/103474
dc.identifier.urnURN:NBN:fi:aalto-202103312747
dc.language.isoenen
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.relation.ispartofseriesIEEE Journal on Selected Topics in Signal Processingen
dc.rightsopenAccessen
dc.subject.keywordCDMAen_US
dc.subject.keywordmillimeter waveen_US
dc.subject.keywordMIMOen_US
dc.subject.keywordparallel factor analysis (PARAFAC)en_US
dc.subject.keywordradaren_US
dc.subject.keywordranken_US
dc.subject.keywordsymbol recoveryen_US
dc.subject.keywordTensor decompositionen_US
dc.subject.keywordtensor factorizationen_US
dc.subject.keywordtransmit beamspaceen_US
dc.subject.keywordTucker modelen_US
dc.titleTensor decompositions in wireless communications and mimo radaren
dc.typeA2 Katsausartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files