Quiver-quenched optical-field-emission from carbon nanotubes

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLi, Chien_US
dc.contributor.authorZhou, Xuen_US
dc.contributor.authorZhai, Fengen_US
dc.contributor.authorLi, Zhenjunen_US
dc.contributor.authorYao, Fengruien_US
dc.contributor.authorQiao, Ruixien_US
dc.contributor.authorChen, Keen_US
dc.contributor.authorYu, Dapengen_US
dc.contributor.authorSun, Zhipeien_US
dc.contributor.authorLiu, Kaihuien_US
dc.contributor.authorDai, Qingen_US
dc.contributor.departmentDepartment of Micro and Nanosciencesen
dc.contributor.departmentDepartment of Electronics and Nanoengineeringen
dc.contributor.groupauthorZhipei Sun Groupen
dc.contributor.organizationNational Center for Nanoscience and Technology Beijingen_US
dc.contributor.organizationPeking Universityen_US
dc.contributor.organizationZhejiang Normal Universityen_US
dc.date.accessioned2018-08-01T13:30:55Z
dc.date.available2018-08-01T13:30:55Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2018-09-25en_US
dc.date.issued2017-09-25en_US
dc.description.abstractCarbon nanotubes (CNTs) enable large electric field enhancement for an extremely broad bandwidth spanning from the optical domain down to static fields. This is due to their high aspect ratio, small tip radius, and high structural stability. CNTs therefore represent an ideal model-system for the investigation of nonlinear and strong-field phenomena. In this paper, we extend the range of optical-field-emission materials from metal nanostructures to CNTs. Quiver-quenched optical-field-emission (i.e., the transition to a sub-cycle regime) is observed for CNTs tips in a short-wavelength laser field of 820 nm that requires a mid-infrared excitation field of conventional metal tips emitters. This special property relies on the ultrasmall tips radius (∼1 nm) and the high optical-field enhancement (∼21.6) properties of CNTs. This study suggests that CNTs are excellent candidates for optically driven ultrafast electron sources with both high spatial and high temporal coherence. They also provide more freedom for the manipulation and control of electron dynamics at the attosecond timescale, which extends the bandwidth of light-wave electronic devices.en
dc.description.versionPeer revieweden
dc.format.extent4
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLi, C, Zhou, X, Zhai, F, Li, Z, Yao, F, Qiao, R, Chen, K, Yu, D, Sun, Z, Liu, K & Dai, Q 2017, ' Quiver-quenched optical-field-emission from carbon nanotubes ', Applied Physics Letters, vol. 111, no. 13, 133101 . https://doi.org/10.1063/1.5003004en
dc.identifier.doi10.1063/1.5003004en_US
dc.identifier.issn0003-6951
dc.identifier.issn1077-3118
dc.identifier.otherPURE UUID: 8bf6c556-b5b2-4af5-b265-f5917b1da9d3en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/8bf6c556-b5b2-4af5-b265-f5917b1da9d3en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85030108099&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/26487572/1.5003004.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/32844
dc.identifier.urnURN:NBN:fi:aalto-201808014245
dc.language.isoenen
dc.publisherAmerican Institute of Physics
dc.relation.ispartofseriesApplied Physics Lettersen
dc.relation.ispartofseriesVolume 111, issue 13en
dc.rightsopenAccessen
dc.titleQuiver-quenched optical-field-emission from carbon nanotubesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files