From hate speech recognition to happiness indexing: critical issues in datafication of emotion in text mining

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLaaksonen, Salla-Maariaen_US
dc.contributor.authorPääkkönen, Juhoen_US
dc.contributor.authorÖhman, Emilyen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorLindgren, Simonen_US
dc.contributor.organizationUniversity of Helsinkien_US
dc.contributor.organizationDepartment of Computer Scienceen_US
dc.contributor.organizationWaseda Universityen_US
dc.date.accessioned2024-01-04T08:45:58Z
dc.date.available2024-01-04T08:45:58Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2024-05-31en_US
dc.date.issued2023-11en_US
dc.description.abstractOne prominent application of computational methods is the identification of affectivity and emotions in textual data, commonly known as sentiment analysis. In this chapter, we explore the datafication of affective language by focusing on operationalization and translation involved in the analysis processes behind common methods to identify affectivity or specific emotions in text. We draw examples from popular cases and from our own empirical studies that apply and develop sentiment and hate speech analysis. We suggest that sentiment analysis is a fruitful case for discussing the role of and the tensions involved in applying computational techniques in the automated analysis of meaning-laden phenomena. We highlight that any application of sentiment analysis techniques to investigate emotional expression in texts amounts to an effort of constructing sentiment measurements - a process essentially driven by judgments made by researchers in an attempt to reconcile diverging conventions and conceptions of good/proper research practices.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLaaksonen, S-M, Pääkkönen, J & Öhman, E 2023, From hate speech recognition to happiness indexing: critical issues in datafication of emotion in text mining . in S Lindgren (ed.), Handbook of Critical Studies of Artificial Intelligence . Edward Elgar . https://doi.org/10.4337/9781803928562.00064en
dc.identifier.doi10.4337/9781803928562.00064en_US
dc.identifier.isbn978-1-80392-855-5
dc.identifier.otherPURE UUID: 2277508d-4365-4a78-a4e4-deb092f7921fen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/2277508d-4365-4a78-a4e4-deb092f7921fen_US
dc.identifier.otherPURE LINK: https://www.e-elgar.com/shop/gbp/handbook-of-critical-studies-of-artificial-intelligence-9781803928555.htmlen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/131435923/From_hate_speech_recognition_to_happiness_indexing_-_critical_issues_in_datafication_of_emotion_in_text_mining.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/125371
dc.identifier.urnURN:NBN:fi:aalto-202401041060
dc.language.isoenen
dc.relation.ispartofseriesHandbook of Critical Studies of Artificial Intelligenceen
dc.rightsopenAccessen
dc.titleFrom hate speech recognition to happiness indexing: critical issues in datafication of emotion in text miningen
dc.typeA3 Kirjan tai muun kokoomateoksen osafi

Files