Cost-optimal dimensioning of hybrid heat pump systems utilizing waste heat from hydrogen production for a kindergarten in cold climate

No Thumbnail Available

Access rights

openAccess
CC BY
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2025-04-01

Major/Subject

Mcode

Degree programme

Language

en

Pages

14

Series

Energy and Buildings, Volume 332

Abstract

The growing need for environmentally-friendly energy solutions encourages the integration of various renewable energy sources in buildings. District heating (DH) systems, widely applied in northern and central European countries, are efficient in transforming and integrating renewable energy sources in large-scale energy systems. With the growth of hydrogen (H2) production, there is great potential for utilizing H2 production excess heat. However, the cost-optimal dimensioning of hybrid heat pump systems considering H2 production excess heat is still in its infancy. This study examined the cost-optimal dimensioning of energy systems based on the 25-year life cycle cost (LCC). Two types of heat pumps, ground source heat pump (GSHP) and air-to-water heat pump (A2WHP) equipped with photovoltaic (PV) panels have been used in tandem with a DH system to provide heat to a kindergarten in the Nordic region. The comparison included two DH tariffs: the commercial DH prices from a DH company and the zero-emission DH price derived from waste heat generated during H2 production. The results found that the GSHP with PV and waste heat from H2 production has the lowest LCC. The utilization of H2 production waste heat can decrease up to 10 % of HP dimensioning because of a lower DH price in the heating season.

Description

Publisher Copyright: © 2025

Keywords

Cost-optimization, District heating, Heat pump, Hydrogen production waste heat, Kindergarten

Other note

Citation

Ju, Y, Hu, X, Jokisalo, J, Kosonen, R, Xue, T, Meriläinen, A & Kosonen, A 2025, ' Cost-optimal dimensioning of hybrid heat pump systems utilizing waste heat from hydrogen production for a kindergarten in cold climate ', Energy and Buildings, vol. 332, 115430 . https://doi.org/10.1016/j.enbuild.2025.115430