Large deviations of multichordal SLE0C, real rational functions, and zeta-regularized determinants of Laplacians
Loading...
Access rights
openAccess
CC BY
CC BY
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Authors
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
67
Series
Journal of the European Mathematical Society, Volume 26, issue 2, pp. 469–535
Abstract
We prove a strong large deviation principle (LDP) for multiple chordal SLE0+SLE0+ curves with respect to the Hausdorff metric. In the single-chord case, this result strengthens an earlier partial result by the second author. We also introduce a Loewner potential, which in the smooth case has a simple expression in terms of zeta-regularized determinants of Laplacians. This potential differs from the LDP rate function by an additive constant depending only on the boundary data, which satisfies PDEs arising as a semiclassical limit of the Belavin–Polyakov–Zamolodchikov equations of level 2 in conformal field theory with central charge c→−∞c→−∞. Furthermore, we show that every multichord minimizing the potential in the upper half-plane for given boundary data is the real locus of a rational function and is unique, thus coinciding with the κ→0+κ→0+ limit of the multiple SLEκSLEκ. As a by-product, we provide an analytic proof of the Shapiro conjecture in real enumerative geometry, first proved by Eremenko and Gabrielov: if all critical points of a rational function are real, then the function is real up to post-composition with a Möbius transformation.Description
Other note
Citation
Peltola, E & Wang, Y 2024, 'Large deviations of multichordal SLE0C, real rational functions, and zeta-regularized determinants of Laplacians', Journal of the European Mathematical Society, vol. 26, no. 2, pp. 469–535. https://doi.org/10.4171/JEMS/1274