Effects of blood flow restriction on motoneurons synchronization
Loading...
Access rights
openAccess
CC BY
CC BY
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
11
Series
Frontiers in Neural Circuits, Volume 19
Abstract
Blood flow restriction (BFR) is a peripheral intervention that induces transient and reversible physiological perturbations. While this intervention offers a unique model to explore neuromuscular responses in multiple contexts, its impact on neural input to motoneurons remains unclear. Here, the influence of BFR on muscle force control, behavior, and neural input to motoneurons during isometric-trapezoidal and isometric-sinusoidal little finger abduction precision tasks has been studied. Sixteen healthy participants performed the tasks under pre-BFR, during BFR, and at two post-BFR conditions. High-density surface electromyography (EMG) was recorded from the abductor digiti minimi muscle, and motor unit spike trains (MUST) were decomposed using blind source separation technique. Coherence between cumulative spike trains (CSTs) of identified motor units was calculated to assess common synaptic input in the delta and alpha frequency bands. As expected, during BFR application, participants reported higher level of discomfort and significant deterioration in force-tracking performance, as measured using root mean square error (RMSE). Following the BFR release, the level of discomfort, along with impaired neuromuscular performance were reduced to pre-BFR condition. Coherence analysis revealed a prominent peak in the alpha band. The mean z-score coherence in the alpha band showed a reduction of 27% for isometric-trapezoidal and 31% for isometric-sinusoidal conditions from pre-BFR to BFR, followed by a rebound post-BFR intervention with increases of 13% and 20%, respectively. In the delta band, coherence values were consistently higher during sinusoidal tasks compared to trapezoidal ones. These findings indicate that brief BFR application led to decrease in motoneuron synchronization and force control precision likely due to desensitization as shown by changes in coherence alpha band.Description
Publisher Copyright: Copyright © 2025 Taleshi, Bubeck, Gizzi and Vujaklija.
Other note
Citation
Taleshi, M, Bubeck, F, Gizzi, L & Vujaklija, I 2025, 'Effects of blood flow restriction on motoneurons synchronization', Frontiers in Neural Circuits, vol. 19, 1561684. https://doi.org/10.3389/fncir.2025.1561684