Searching for functional gene modules with interaction component models

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorParkkinen, Juuso
dc.contributor.authorKaski, Samuel
dc.contributor.departmentDepartment of Information and Computer Scienceen
dc.contributor.departmentTietojenkäsittelytieteen laitosfi
dc.contributor.labStatistical Machine Learning and Bioinformaticsen
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.schoolSchool of Scienceen
dc.date.accessioned2013-11-01T06:54:46Z
dc.date.available2013-11-01T06:54:46Z
dc.date.issued2010
dc.description.abstractBackground:Functional gene modules and protein complexes are being sought from combinations of gene expression and protein-protein interaction data with various clustering-type methods. Central features missing from most of these methods are handling of uncertainty in both protein interaction and gene expression measurements, and in particular capability of modeling overlapping clusters. It would make sense to assume that proteins may play different roles in different functional modules, and the roles are evidenced in their interactions. Results:We formulate a generative probabilistic model for protein-protein interaction links and introduce two ways for including gene expression data into the model. The model finds interaction components, which can be interpreted as overlapping clusters or functional modules. We demonstrate the performance on two data sets of yeast Saccharomyces cerevisiae. Our methods outperform a representative set of earlier models in the task of finding biologically relevant modules having enriched functional classes. Conclusions:Combining protein interaction and gene expression data with a probabilistic generative model improves discovery of modules compared to approaches based on either data source alone. With a fairly simple model we can find biologically relevant modules better than with alternative methods, and in addition the modules may be inherently overlapping in the sense that different interactions may belong to different modules.en
dc.description.versionPeer revieweden
dc.format.extentpp. 4-11
dc.format.mimetypeapplication/pdfen
dc.identifier.citationParkkinen, Juuso & Kaski, Samuel. 2010. Searching for functional gene modules with interaction component models. BMC Systems Biology. Vol. 4, nro 1. P. 4-11. ISSN 1752-0509 (electronic). DOI: 10.1186/1752-0509-4-4.en
dc.identifier.doi10.1186/1752-0509-4-4
dc.identifier.issn1752-0509 (electronic)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/11255
dc.identifier.urnURN:NBN:fi:aalto-201311017771
dc.language.isoenen
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.ispartofseriesBMC Systems Biologyen
dc.relation.ispartofseriesVol. 4, nro 1
dc.rights.holderBioMed Central Ltd.
dc.subject.keywordbioinformaticsen
dc.subject.keywordmachine learningen
dc.subject.keywordnetwork analysisen
dc.subject.otherBiotechnologyen
dc.titleSearching for functional gene modules with interaction component modelsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.dcmitypetexten
dc.type.versionFinal published versionen

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A1_parkkinen_juuso_2010.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
licence.txt
Size:
1.22 KB
Format:
Plain Text
Description: