First M87 Event Horizon Telescope Results. VI. the Shadow and Mass of the Central Black Hole

Loading...
Thumbnail Image
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2019-04-10
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Astrophysical Journal Letters, Volume 875, issue 1
Abstract
We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 ±3 μas and constrain its fractional width to be <0.5. Associating the crescent feature with the emission surrounding the black hole shadow, we infer an angular gravitational radius of GM/Dc 2 =3.8 ±0.4 μas. Folding in a distance measurement of gives a black hole mass of . This measurement from lensed emission near the event horizon is consistent with the presence of a central Kerr black hole, as predicted by the general theory of relativity.
Description
Keywords
black hole physics, galaxies: individual (M87), gravitation, techniques: high angular resolution, techniques: interferometric
Other note
Citation
Savolainen, T & Event Horizon Telescope Collaboration 2019, ' First M87 Event Horizon Telescope Results. VI. the Shadow and Mass of the Central Black Hole ', Astrophysical Journal Letters, vol. 875, no. 1, 6 . https://doi.org/10.3847/2041-8213/ab1141