Applied electromagnetic optics simulations for nanophotonics
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
25
Series
Journal of Applied Physics, Volume 129, issue 13
Abstract
Nanophotonics—the science and technology of confining, guiding, and making photons interact with matter at the nanoscale—is an active research field. By varying the geometry and constituent materials, nanostructures allow precise control of the scattering of incident light and tailoring of emitted light. In this Tutorial, we outline the use of the Maxwell equations to model the optical response of nanostructures. This electromagnetic optics approach uses the refractive indices of the constituent materials and the geometry of the nanostructures as input. For most nanostructure geometries, analytical solutions to the Maxwell equations are not available. Therefore, we discuss varying computational methods for solving the equations numerically. These methods allow us to simulate the optical response of nanostructures, as needed for design optimization and analysis of characterization results.Description
Keywords
Other note
Citation
Anttu, N, Mäntynen, H, Sorokina, A, Turunen, J, Sadi, T & Lipsanen, H 2021, 'Applied electromagnetic optics simulations for nanophotonics', Journal of Applied Physics, vol. 129, no. 13, 131102. https://doi.org/10.1063/5.0041275