A hierarchical Bayesian regression framework for enabling online reliability estimation and condition-based maintenance through accelerated testing

No Thumbnail Available

Access rights

openAccess
acceptedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2022-08

Major/Subject

Mcode

Degree programme

Language

en

Pages

13

Series

Computers in Industry, Volume 139, pp. 1-13

Abstract

Thanks to the advances in the Internet of Things (IoT), Condition-based Maintenance (CBM) has progressively become one of the most renowned strategies to mitigate the risk arising from failures. Within any CBM framework, non-linear correlation among data and variability of condition monitoring data sources are among the main reasons that lead to a complex estimation of Reliability Indicators (RIs). Indeed, most classic approaches fail to fully consider these aspects. This work presents a novel methodology that employs Accelerated Life Testing (ALT) as multiple sources of data to define the impact of relevant PVs on RIs, and subsequently, plan maintenance actions through an online reliability estimation. For this purpose, a Generalized Linear Model (GLM) is exploited to model the relationship between PVs and an RI, while a Hierarchical Bayesian Regression (HBR) is implemented to estimate the parameters of the GLM. The HBR can deal with the aforementioned uncertainties, allowing to get a better explanation of the correlation of PVs. We considered a numerical example that exploits five distinct operating conditions for ALT as a case study. The developed methodology provides asset managers a solid tool to estimate online reliability and plan maintenance actions as soon as a given condition is reached.(c) 2022 Elsevier B.V. All rights reserved.

Description

Keywords

Condition monitoring, Condition-based maintenance, Hierarchical Bayesian regression, Generalized linear model, Online reliability estimation

Other note

Citation

Leoni, L, De Carlo, F, Abaei, M M & BahooToroody, A 2022, ' A hierarchical Bayesian regression framework for enabling online reliability estimation and condition-based maintenance through accelerated testing ', Computers in Industry, vol. 139, 103645, pp. 1-13 . https://doi.org/10.1016/j.compind.2022.103645