Additive manufacturing and performance of E-Type transformer core

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2021-06-03

Major/Subject

Mcode

Degree programme

Language

en

Pages

14

Series

Energies, Volume 14, issue 11

Abstract

Additive manufacturing of ferromagnetic materials for electrical machine applications is maturing. In this work, a full E-type transformer core is printed, characterized, and compared in terms of performance with a conventional Goss textured core. For facilitating a modular winding and eddy current loss reduction, the 3D printed core is assembled from four novel interlocking components, which structurally imitate the E-type core laminations. Both cores are compared at approximately their respective optimal working conditions, at identical magnetizing currents. Due to the superior magnetic properties of the Goss sheet conventional transformer core, 10% reduced efficiency (from 80.5% to 70.1%) and 34% lower power density (from 59 VA/kg to 39 VA/kg) of the printed transformer are identified at operating temperature. The first prototype transformer core demonstrates the state of the art and initial optimization step for further development of additively manufactured soft ferromagnetic components. Further optimization of both the 3D printed material and core design are proposed for obtaining higher electrical performance for AC applications.

Description

Funding Information: Funding: This research work has been supported by the Estonian Ministry of Education and Re‐ search (Project PSG‐137). Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

Additive manufacturing, Iron losses, Magnetic properties, Selective laser melting, Soft magnetic materials, Transformer

Other note

Citation

Tiismus, H, Kallaste, A, Belahcen, A, Rassõlkin, A, Vaimann, T & Ghahfarokhi, P S 2021, ' Additive manufacturing and performance of E-Type transformer core ', Energies, vol. 14, no. 11, 3278 . https://doi.org/10.3390/en14113278