Genetically engineered protein based nacre-like nanocomposites with superior mechanical and electrochemical performance

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorDhar, Prodyuten_US
dc.contributor.authorPhiri, Josphaten_US
dc.contributor.authorSzilvay, Géza R.en_US
dc.contributor.authorWesterholm-Parvinen, Annen_US
dc.contributor.authorMaloney, Thaddeusen_US
dc.contributor.authorLaaksonen, Päivien_US
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.groupauthorBio-based Materialsen
dc.contributor.organizationVTT Technical Research Centre of Finlanden_US
dc.contributor.organizationKyoto Universityen_US
dc.date.accessioned2020-02-03T09:02:22Z
dc.date.available2020-02-03T09:02:22Z
dc.date.issued2020-01-14en_US
dc.description.abstractThe molecular engineering of proteins at the atomistic scale with specific material binding units and the introduction of designed functional-linkers provides a unique approach to fabricate genetically modified high performance and responsive biomimetic composites. This work is inspired by a tough biological material, nacre, which possesses a hierarchical 'brick-mortar' architecture containing multifunctional soft organic molecules, which plays a significant role in improved mechanical properties of composites. A bio-inspired composite, using a resilin-based hybrid protein polymer with selective binding motifs for reduced graphene oxide (RGO) and nanofibrillated cellulose (NFC), was developed. The adhesive and elastic domains of fusion proteins show a synergistic effect with improvement in both the strength and toughness of synthetic nacre. We observed that the hybrid protein could act as a spacer molecule tuning the ion sorption and transport across the inter-layers of NFC/RGO depending on the processing conditions. Interestingly, the protein complexed freestanding solid-state films showed negligible internal resistance and improved supercapacitance suitable for flexible electronic devices. The protein-mediated binding of NFC and RGO reduces the resistance arising from poor electrode/electrolyte interfaces, which is difficult to achieve through conventional routes. The current biosynthetic route for engineering proteins provides a novel prospect to develop materials programmed with desired properties, depending on target applications.en
dc.description.versionPeer revieweden
dc.format.extent14
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationDhar, P, Phiri, J, Szilvay, G R, Westerholm-Parvinen, A, Maloney, T & Laaksonen, P 2020, ' Genetically engineered protein based nacre-like nanocomposites with superior mechanical and electrochemical performance ', Journal of Materials Chemistry. A, vol. 8, no. 2, pp. 656-669 . https://doi.org/10.1039/c9ta10881een
dc.identifier.doi10.1039/c9ta10881een_US
dc.identifier.issn2050-7488
dc.identifier.issn2050-7496
dc.identifier.otherPURE UUID: c6558292-c972-4f9e-906e-af3e14110b11en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/c6558292-c972-4f9e-906e-af3e14110b11en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85077507544&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/40606789/CHEM_Dhar_et_al_2020_Genetically_engineered_JourMatChem.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/42944
dc.identifier.urnURN:NBN:fi:aalto-202002032024
dc.language.isoenen
dc.publisherRoyal Society of Chemistry
dc.relation.ispartofseriesJournal of Materials Chemistry. Aen
dc.relation.ispartofseriesVolume 8, issue 2, pp. 656-669en
dc.rightsopenAccessen
dc.titleGenetically engineered protein based nacre-like nanocomposites with superior mechanical and electrochemical performanceen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files