Non-linear Gaussian smoothing with Taylor moment expansion

Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2022

Major/Subject

Mcode

Degree programme

Language

en

Pages

5
80-84

Series

IEEE Signal Processing Letters, Volume 29

Abstract

This letter is concerned with solvingcontinuous-discrete Gaussian smoothing problems by using the Taylor moment expansion (TME) scheme. In the proposed smoothing method, we apply the TME method to approximate the transition density of the stochastic differential equation in the dynamic model. Furthermore, we derive a theoretical error bound (in the mean square sense) of the TME smoothing estimates showing that the smoother is stable under weak assumptions. Numerical experiments show that the proposed smoother outperforms a number of baseline smoothers.

Description

Tallennetaan OA-artikkeli, kun julkaistu

Keywords

Smoothing methods, Mathematical models, Signal processing algorithms, Numerical models, Approximation algorithms, Stochastic processes, Frequency modulation

Other note

Citation

Zhao, Z & Särkkä, S 2022, ' Non-linear Gaussian smoothing with Taylor moment expansion ', IEEE Signal Processing Letters, vol. 29, 9606583, pp. 80-84 . https://doi.org/10.1109/LSP.2021.3125831