Direction specific ambisonics source separation with end-to-end deep learning

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLluís, Francescen_US
dc.contributor.authorMeyer-Kahlen, Nilsen_US
dc.contributor.authorChatziioannou, Vasileiosen_US
dc.contributor.authorHofmann, Alexen_US
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.groupauthorVirtual Acousticsen
dc.contributor.organizationUniversitat fur Musik und darstellende Kunst Wien - University of Music and Performing Arts Viennaen_US
dc.date.accessioned2023-08-11T07:23:07Z
dc.date.available2023-08-11T07:23:07Z
dc.date.issued2023en_US
dc.description.abstractAmbisonics is a scene-based spatial audio format that has several useful features compared to object-based formats, such as efficient whole scene rotation and versatility. However, it does not provide direct access to the individual source signals, so that these have to be separated from the mixture when required. Typically, this is done with linear spherical harmonics (SH) beamforming. In this paper, we explore deep-learning-based source separation on static Ambisonics mixtures. In contrast to most source separation approaches, which separate a fixed number of sources of specific sound types, we focus on separating arbitrary sound from specific directions. Specifically, we propose three operating modes that combine a source separation neural network with SH beamforming: refinement, implicit, and mixed mode. We show that a neural network can implicitly associate conditioning directions with the spatial information contained in the Ambisonics scene to extract specific sources. We evaluate the performance of the three proposed approaches and compare them to SH beamforming on musical mixtures generated with the musdb18 dataset, as well as with mixtures generated with the FUSS dataset for universal source separation, under both anechoic and room conditions. Results show that the proposed approaches offer improved separation performance and spatial selectivity compared to conventional SH beamforming.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLluís, F, Meyer-Kahlen, N, Chatziioannou, V & Hofmann, A 2023, ' Direction specific ambisonics source separation with end-to-end deep learning ', Acta Acustica, vol. 7, 29 . https://doi.org/10.1051/aacus/2023020en
dc.identifier.doi10.1051/aacus/2023020en_US
dc.identifier.issn2681-4617
dc.identifier.otherPURE UUID: 88f88ca1-1925-47c6-96fd-d43a3a145a8ben_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/88f88ca1-1925-47c6-96fd-d43a3a145a8ben_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85164144005&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/118038372/aacus220049.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/122375
dc.identifier.urnURN:NBN:fi:aalto-202308114724
dc.language.isoenen
dc.publisherEDP Sciences
dc.relation.ispartofseriesActa Acusticaen
dc.relation.ispartofseriesVolume 7en
dc.rightsopenAccessen
dc.titleDirection specific ambisonics source separation with end-to-end deep learningen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files