Reliability-based buckling optimization with an accelerated Kriging metamodel for filament-wound variable angle tow composite cylinders

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2020-12-15

Major/Subject

Mcode

Degree programme

Language

en

Pages

14

Series

Composite Structures, Volume 254, pp. 1-14

Abstract

A reliability-based optimization framework is introduced and used to design filament-wound cylindrical shells with variable angle tow. Seven design cases are investigated to enable a comparison between constant-stiffness and variable angle tow designs, also considering effects of thickness variation created due to overlapping tow paths, determined using the kinematics of the filament winding manufacturing process. The uncertainty in the winding angle is considered in the optimization by means of metamodels constructed using the Kriging method. Moving search windows are incorporated into the Kriging metamodel to accelerate its convergence by reducing the number of training iterations. The results prove the efficacy of the proposed framework and clearly demonstrate the advantage of variable-stiffness designs over conventional ones for achieving a maximum load carrying capacity, while keeping the robustness of the design towards manufacturing uncertainties.

Description

Keywords

Other note

Citation

Wang, Z, Almeida, H, St-Pierre, L, Wang, Z & Castro, S G P 2020, ' Reliability-based buckling optimization with an accelerated Kriging metamodel for filament-wound variable angle tow composite cylinders ', Composite Structures, vol. 254, 112821, pp. 1-14 . https://doi.org/10.1016/j.compstruct.2020.112821