The sextuply shortened binary Golay code is optimal

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorÖstergård, Patric R.J.en_US
dc.contributor.departmentDepartment of Communications and Networkingen
dc.contributor.groupauthorInformation Theoryen
dc.date.accessioned2018-09-06T10:17:13Z
dc.date.available2018-09-06T10:17:13Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2019-08-14en_US
dc.date.issued2019-03-15en_US
dc.description.abstractThe maximum size of unrestricted binary three-error-correcting codes has been known up to the length of the binary Golay code, with two exceptions. Specifically, denoting the maximum size of an unrestricted binary code of length n and minimum distance d by A(n, d), it has been known that 64 ≤ A(18 , 8 ) ≤ 68 and 128 ≤ A(19 , 8 ) ≤ 131. In the current computer-aided study, it is shown that A(18 , 8 ) = 64 and A(19 , 8 ) = 128 , so an optimal code is obtained even after shortening the extended binary Golay code six times.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationÖstergård, P R J 2019, ' The sextuply shortened binary Golay code is optimal ', Designs Codes and Cryptography, vol. 87, no. 2-3, pp. 341–347 . https://doi.org/10.1007/s10623-018-0532-zen
dc.identifier.doi10.1007/s10623-018-0532-zen_US
dc.identifier.issn0925-1022
dc.identifier.issn1573-7586
dc.identifier.otherPURE UUID: b35a759f-0385-44ad-840d-096ccbf1f2b9en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/b35a759f-0385-44ad-840d-096ccbf1f2b9en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85051849823&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/27672730/ELEC_ostergord_golay.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/33872
dc.identifier.urnURN:NBN:fi:aalto-201809064983
dc.language.isoenen
dc.relation.ispartofseriesDesigns, Codes, and Cryptographyen
dc.rightsopenAccessen
dc.subject.keywordClassificationen_US
dc.subject.keywordCliqueen_US
dc.subject.keywordDouble countingen_US
dc.subject.keywordError-correcting codeen_US
dc.subject.keywordGolay codeen_US
dc.subject.keywordUPPER-BOUNDSen_US
dc.subject.keywordUNRESTRICTED CODESen_US
dc.subject.keywordERROR-CORRECTING CODESen_US
dc.titleThe sextuply shortened binary Golay code is optimalen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi

Files