Force and heat current formulas for many-body potentials in molecular dynamics simulation with applications to thermal conductivity calculations

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorFan, Z.en_US
dc.contributor.authorPereira, L.F.C.en_US
dc.contributor.authorWang, H.-Q.en_US
dc.contributor.authorZheng, J.-C.en_US
dc.contributor.authorDonadio, D.en_US
dc.contributor.authorHarju, Arien_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorQuantum Many-Body Physicsen
dc.date.accessioned2018-08-08T09:59:51Z
dc.date.available2018-08-08T09:59:51Z
dc.date.issued2015en_US
dc.description.abstractWe derive expressions of interatomic force and heat current for many-body potentials such as the Tersoff, the Brenner, and the Stillinger-Weber potential used extensively in molecular dynamics simulations of covalently bonded materials. Although these potentials have a many-body nature, a pairwise force expression that follows Newton's third law can be found without referring to any partition of the potential. Based on this force formula, a stress applicable for periodic systems can be unambiguously defined. The force formula can then be used to derive the heat current formulas using a natural potential partitioning. Our heat current formulation is found to be equivalent to most of the seemingly different heat current formulas used in the literature, but to deviate from the stress-based formula derived from two-body potential. We validate our formulation numerically on various systems described by the Tersoff potential, namely three-dimensional silicon and diamond, two-dimensional graphene, and quasi-one-dimensional carbon nanotube. The effects of cell size and production time used in the simulation are examined.en
dc.description.versionPeer revieweden
dc.format.extent1-12
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationFan, Z, Pereira, L F C, Wang, H-Q, Zheng, J-C, Donadio, D & Harju, A 2015, ' Force and heat current formulas for many-body potentials in molecular dynamics simulation with applications to thermal conductivity calculations ', Physical Review B, vol. 92, no. 9, 094301, pp. 1-12 . https://doi.org/10.1103/PhysRevB.92.094301en
dc.identifier.doi10.1103/PhysRevB.92.094301en_US
dc.identifier.issn1098-0121
dc.identifier.issn1550-235X
dc.identifier.otherPURE UUID: 0c93c170-7f93-48dc-967e-793131b077deen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/0c93c170-7f93-48dc-967e-793131b077deen_US
dc.identifier.otherPURE LINK: http://arxiv.org/abs/1503.06565en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/26800424/PhysRevB.92.094301.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/33042
dc.identifier.urnURN:NBN:fi:aalto-201808084442
dc.language.isoenen
dc.relation.ispartofseriesPHYSICAL REVIEW Ben
dc.relation.ispartofseriesVolume 92, issue 9en
dc.rightsopenAccessen
dc.subject.keywordmolecular dynamicsen_US
dc.titleForce and heat current formulas for many-body potentials in molecular dynamics simulation with applications to thermal conductivity calculationsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files