Machine learning framework for OPC UA data (Industry 4.0)

Loading...
Thumbnail Image

URL

Journal Title

Journal ISSN

Volume Title

Kemian tekniikan korkeakoulu | Master's thesis

Date

2019-06-18

Department

Major/Subject

Chemical Engineering

Mcode

CHEM3027

Degree programme

Master's Programme in Chemical, Biochemical and Materials Engineering

Language

en

Pages

69 + 2

Series

Abstract

Machine learning has rapidly gained popularity in all industries with the increase of computational power and data gathering capabilities. Process industry is a good candidate for machine learning based modeling due to the large amounts of data gathered and need for accurate process state predictions. In this work the viability of combining the OPC UA protocol with existing open source machine learning libraries to create data driven models and generate real time predictions was studied. Scikit-learn was used to generate soft sensor style models for the butane content of a debutanizer column output. The data for offline model training was dynamically fetched from an OCP UA server and with a trained model predictions could be generated in real time. The accuracy of the generated models needs to be further researched with better methodology and larger datasets.

Koneoppiminen on kasvattanut suosiotaan nopeasti kaikilla toimialoilla laskentatehon ja datankeruun kasvaessa. Prosessiteollisuus on hyvä kandidaatti koneoppimispohjaiselle mallinnukselle suurien datamäärien sekä vaadittujen tarkkojen prosessimallien takia. Tässä työssä tutkittiin mahdollisuutta OPC UA protokollan yhdistämistä olemassaolevien avoimen lähdekoodin koneoppimiskirjastojen kanssa mittausdataan perustuvien mallien opettamiseksi ja reaaliaikaisten ennusteiden luomiseksi. Scikit-learn kirjastoa käytettiin luomaan malleja butaaninpoistokolonnin ulostulon butaanipitoisuuden ennustamiseen. Data mallien offline opetukseen ladattiin dynaamisesti OPC UA palvelimelta ja valmiiksi opetetulla mallilla ennusteita voitiin generoida reaaliaikaisesti. Luotujen mallien tarkkuutta täytyy tutkia tarkemmin paremmalla metodologialla ja suuremmilla datamäärillä.

Description

Supervisor

Jämsä-Jounela, Sirkka-Liisa

Thesis advisor

Boriouchkine, Alexandre
Saurus, Lauri

Keywords

machine learning, OPC UA, framework, process industry

Other note

Citation