On the existence of shear-current effects in magnetized burgulence
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2020-12-20
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
17
Series
Astrophysical Journal, Volume 905, issue 2
Abstract
The possibility of explaining shear flow dynamos by a magnetic shear-current (MSC) effect is examined via numerical simulations. Our primary diagnostics is the determination of the turbulent magnetic diffusivity tensor η. In our setup, a negative sign of its component η yx is necessary for coherent dynamo action by the SC effect. To be able to measure turbulent transport coefficients from systems with magnetic background turbulence, we present an extension of the test-field method (TFM) applicable to our setup where the pressure gradient is dropped from the momentum equation: the nonlinear TFM (NLTFM). Our momentum equation is related to Burgers' equation and the resulting flows are referred to as magnetized burgulence. We use both stochastic kinetic and magnetic forcings to mimic cases without and with simultaneous small-scale dynamo action. When we force only kinetically, negative η yx are obtained with exponential growth in both the radial and azimuthal mean magnetic field components. Using magnetokinetic forcing, the field growth is no longer exponential, while NLTFM yields positive η yx . By employing an alternative forcing from which wavevectors whose components correspond to the largest scales are removed, the exponential growth is recovered, but the NLTFM results do not change significantly. Analyzing the dynamo excitation conditions for the coherent SC and incoherent α and SC effects shows that the incoherent effects are the main drivers of the dynamo in the majority of cases. We find no evidence for MSC-effect-driven dynamos in our simulations.Description
| openaire: EC/H2020/818665/EU//UniSDyn
Keywords
Physics - Fluid Dynamics, Astrophysics - Astrophysics of Galaxies, Astrophysics - Solar and Stellar Astrophysics
Other note
Citation
Käpylä, M J, Álvarez Vizoso, J, Rheinhardt, M, Brandenburg, A & Singh, N K 2020, ' On the existence of shear-current effects in magnetized burgulence ', The Astrophysical Journal, vol. 905, no. 2, 179 . https://doi.org/10.3847/1538-4357/abc1e8