On the existence of shear-current effects in magnetized burgulence

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2020-12-20

Major/Subject

Mcode

Degree programme

Language

en

Pages

17

Series

Astrophysical Journal, Volume 905, issue 2

Abstract

The possibility of explaining shear flow dynamos by a magnetic shear-current (MSC) effect is examined via numerical simulations. Our primary diagnostics is the determination of the turbulent magnetic diffusivity tensor η. In our setup, a negative sign of its component η yx is necessary for coherent dynamo action by the SC effect. To be able to measure turbulent transport coefficients from systems with magnetic background turbulence, we present an extension of the test-field method (TFM) applicable to our setup where the pressure gradient is dropped from the momentum equation: the nonlinear TFM (NLTFM). Our momentum equation is related to Burgers' equation and the resulting flows are referred to as magnetized burgulence. We use both stochastic kinetic and magnetic forcings to mimic cases without and with simultaneous small-scale dynamo action. When we force only kinetically, negative η yx are obtained with exponential growth in both the radial and azimuthal mean magnetic field components. Using magnetokinetic forcing, the field growth is no longer exponential, while NLTFM yields positive η yx . By employing an alternative forcing from which wavevectors whose components correspond to the largest scales are removed, the exponential growth is recovered, but the NLTFM results do not change significantly. Analyzing the dynamo excitation conditions for the coherent SC and incoherent α and SC effects shows that the incoherent effects are the main drivers of the dynamo in the majority of cases. We find no evidence for MSC-effect-driven dynamos in our simulations.

Description

| openaire: EC/H2020/818665/EU//UniSDyn

Keywords

Physics - Fluid Dynamics, Astrophysics - Astrophysics of Galaxies, Astrophysics - Solar and Stellar Astrophysics

Other note

Citation

Käpylä, M J, Álvarez Vizoso, J, Rheinhardt, M, Brandenburg, A & Singh, N K 2020, ' On the existence of shear-current effects in magnetized burgulence ', The Astrophysical Journal, vol. 905, no. 2, 179 . https://doi.org/10.3847/1538-4357/abc1e8