AutoSegNet: An Automated Neural Network for Image Segmentation
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
2020-05-18
Major/Subject
Mcode
Degree programme
Language
en
Pages
10
Series
IEEE Access, Volume 8
Abstract
Neural Architecture Search (NAS) has drawn significant attention as a tool for automatically constructing deep neural networks. The generated neural networks are mainly applied for image classification, and natural language processing. However, there are increasing demands for image segmentation in various areas, such as medical image processing, satellite image object location, and autopilot technology. We propose a NAS method called Automated Segmentation Network (AutoSegNet), targeting industrial and medical image segmentation. The search architectures are constructed by stacking the downsampling layer, the bridge layer, and the upsampling layer, which are explored by a recurrent neural network. Compared with other related methods for image segmentation, the proposed method has a small search space but can explore most of the-state-of-the-art supervised image segmentation models. We perform verification on two datasets, and the results show that AutoSegNet achieves superior segmentation results with clear and continuous segmented edges, as well as better image details.Description
Keywords
Other note
Citation
Xu, Z, Zuo, S, Lam, E Y, Lee, B & Chen, N 2020, ' AutoSegNet: An Automated Neural Network for Image Segmentation ', IEEE Access, vol. 8 . https://doi.org/10.1109/ACCESS.2020.2995367