Multivariate copula procedure for electric vehicle charging event simulation

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

11

Series

Energy, Volume 238

Abstract

This paper introduces a novel application area for multivariate copulas in electric vehicle charging event simulation and dependency analysis. We propose a multivariate copula procedure that can be used to generate new synthetic charging events, which retain the complex dependency and correlation structures present in real-world charging events. The paper compares the most popular multivariate copula functions to discover the most reliable one to be used with electric vehicle charging event data. Accurate EV charging event simulation and analysis is crucial in multiple theoretical and practical applications such as charging load and demand response aggregation modelling. Based on multiple goodness-of-fit tests and charging load profiles of simulated charging events, the Student-t copula was found to be the most reliable multivariate copula to be used with EV charging data. Overall, the multivariate copula procedure is effective in analysis and simulation of EV charging events as it retains the inherent variability and complex dependencies of real charging events.

Description

Funding Information: This work was supported by the Academy of Finland , STORE-project [grant number 298317 ]. Publisher Copyright: © 2021 The Author(s)

Other note

Citation

Einolander, J & Lahdelma, R 2022, 'Multivariate copula procedure for electric vehicle charging event simulation', Energy, vol. 238, 121718. https://doi.org/10.1016/j.energy.2021.121718