Deterministic Small Vertex Connectivity in Almost Linear Time

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorSaranurak, Thatchapholen_US
dc.contributor.authorYingchareonthawornchai, Sorrachaien_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Chalermsook Parinyaen
dc.contributor.organizationUniversity of Michigan, Ann Arboren_US
dc.date.accessioned2023-01-18T09:28:46Z
dc.date.available2023-01-18T09:28:46Z
dc.date.issued2022-10-30en_US
dc.description| openaire: EC/H2020/759557/EU//ALGOCom
dc.description.abstractIn the vertex connectivity problem, given an undirected n-vertex m-edge graph G, we need to compute the minimum number of vertices that can disconnect G after removing them. This problem is one of the most well-studied graph problems. From 2019, a new line of work [Nanongkai et al.~STOC'19;SODA'20;STOC'21] has used randomized techniques to break the quadratic-time barrier and, very recently, culminated in an almost-linear time algorithm via the recently announced max-flow algorithm by Chen et al. In contrast, all known deterministic algorithms are much slower. The fastest algorithm [Gabow FOCS'00] takes O(m(n+min{c^(5/2),cn^(3/4)})) time where c is the vertex connectivity. It remains open whether there exists a subquadratic-time deterministic algorithm for any constant c>3. In this paper, we give the first deterministic almost-linear time vertex connectivity algorithm for all constants c. Our running time is m1+o(1)2O(c2) time, which is almost-linear for all c=o(sqrt(log n)). This is the first deterministic algorithm that breaks the O(n^2)-time bound on sparse graphs where m=O(n), which is known for more than 50 years ago [Kleitman'69]. Towards our result, we give a new reduction framework to vertex expanders which in turn exploits our new almost-linear time construction of mimicking network for vertex connectivity. The previous construction by Kratsch and Wahlström [FOCS'12] requires large polynomial time and is randomized.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationSaranurak, T & Yingchareonthawornchai, S 2022, Deterministic Small Vertex Connectivity in Almost Linear Time . in Proceedings of 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS) . Annual Symposium on Foundations of Computer Science, IEEE, pp. 789-800, Annual Symposium on Foundations of Computer Science, Denver, Colorado, United States, 31/10/2022 . https://doi.org/10.1109/FOCS54457.2022.00080en
dc.identifier.doi10.1109/FOCS54457.2022.00080en_US
dc.identifier.isbn978-1-6654-5519-0
dc.identifier.issn2575-8454
dc.identifier.otherPURE UUID: dc637d88-0eb7-4d55-9316-891d33433368en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/dc637d88-0eb7-4d55-9316-891d33433368en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85146337192&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/94756446/main_vertex_conn.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/118980
dc.identifier.urnURN:NBN:fi:aalto-202301181336
dc.language.isoenen
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/759557/EU//ALGOComen_US
dc.relation.ispartofAnnual Symposium on Foundations of Computer Scienceen
dc.relation.ispartofseriesProceedings of 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)en
dc.relation.ispartofseriespp. 789-800en
dc.relation.ispartofseriesAnnual Symposium on Foundations of Computer Scienceen
dc.rightsopenAccessen
dc.titleDeterministic Small Vertex Connectivity in Almost Linear Timeen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files