Chirality logic gates

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

Series

Science Advances, Volume 8, issue 49

Abstract

The ever-growing demand for faster and more efficient data transfer and processing has brought optical computation strategies to the forefront of research in next-generation computing. Here, we report a universal computing approach with the chirality degree of freedom. By exploiting the crystal symmetry–enabled well-known chiral selection rules, we demonstrate the viability of the concept in bulk silica crystals and atomically thin semiconductors and create ultrafast (<100-fs) all-optical chirality logic gates (XNOR, NOR, AND, XOR, OR, and NAND) and a half adder. We also validate the unique advantages of chirality gates by realizing multiple gates with simultaneous operation in a single device and electrical control. Our first demonstrations of logic gates using chiral selection rules suggest that optical chirality could provide a powerful degree of freedom for future optical computing.

Description

Funding: We acknowledge the financial support from Aalto Centre for Quantum Engineering, Academy of Finland (grants 333099, 314810, 333982, 336144, and 336818), Academy of Finland Flagship Programme (320167, PREIN), the European Union’s Horizon research and innovation program (grant agreement no. 101067269, ChirLog), the EU H2020-MSCA-RISE-872049 (IPN-Bio), and ERC advanced grant (834742). Publisher Copyright: Copyright © 2022 The Authors, some rights reserved; | openaire: EC/H2020/834742/EU//ATOP | openaire: EC/HE/101067269/EU//ChirLog | openaire: EC/H2020/872049/EU//IPN-Bio

Keywords

Other note

Citation

Zhang, Y, Wang, Y, Dai, Y, Bai, X, Hu, X, Du, L, Hu, H, Yang, X, Li, D, Dai, Q, Hasan, T & Sun, Z 2022, 'Chirality logic gates', Science Advances, vol. 8, no. 49, eabq8246. https://doi.org/10.1126/sciadv.abq8246