Liittymien liikenneturvallisuuden mittaaminen: Vaarallisten kohteiden tunnistaminen Helsingin kantakaupungissa
Loading...
URL
Journal Title
Journal ISSN
Volume Title
Insinööritieteiden korkeakoulu |
Master's thesis
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Authors
Date
2015-04-27
Department
Major/Subject
Liikenne- ja tietekniikka
Mcode
R3004
Degree programme
Yhdyskunta- ja ympäristötekniikan koulutusohjelma
Language
fi
Pages
81
Series
Abstract
Tutkimuksessa on sovellettu uutta menetelmää liikenneturvallisuuden mittaamiseksi ja mustien pisteiden, eli vaarallisten kohteiden tunnistamiseksi Helsingin kantakaupungin katuliittymissä. Työssä on aiemman tutkimuksen avulla verrattu eri menetelmiä mustien pisteiden tunnistamiseksi ja perusteltu käytetyn Empirical Bayes -menetelmän valinta. Tutkimuksessa sovellettava Empirical Bayes -menetelmä mittaa liikenneturvallisuutta liittymässä havaitun onnettomuusfrekvenssin sekä muilta vastaavilta liittymiltä odotetun onnettomuusfrekvenssin painotettuna keskiarvona. Vastaavien kohteiden onnettomuusfrekvenssi määritetään työssä laadittavalla tilastollisella mallilla. Tutkimusaineistona on käytetty poliisin tietoon tulleita onnettomuuksia sekä Helsingin kaupunkisuunnitteluviraston ylläpitämää liittymäpisterekisteriä. Mallintamisessa käytetyt muuttujat on luotu yhdistelemällä valmiiksi saatavilla olevaa tietoa liittymien ominaisuuksista. Työssä on laadittu yleistetty lineaarinen malli onnettomuusfrekvenssin ennustamiseksi. Laaditun negatiivisen binomiregressiomallin selittävinä muuttujina ovat liittymän pää- ja sivusuuntien liikennemäärät sekä liittymän haarojen lukumäärä. Liikennevalo-ohjauksisille ja valo-ohjauksettomille liittymille on laadittu erilliset regressiomallit.A new method for the identification of accident hot spots in the intersections of Helsinki is applied in this master's thesis. Prior research is used to compare different identification methods, and a method called Empirical Bayes is chosen for the analysis. The Empirical Bayes method estimates the safety of an entity by combining prior information from other sites to observed information from the observed entity. The prior information is obtained through the use of a statistical model. The negative binomial regression model used in the research is estimated using empirical accident data and detailed information about the intersections in Helsinki. The scope of research is limited to intersections in the inner city of Helsinki. The independent variables in the model are the AADTs of the intersection's main and secondary legs and the number of legs in the intersection. Separate models are used for signalized and non-signalized intersections.Description
Supervisor
Luttinen, TapioThesis advisor
Strömmer, HannaKeywords
liikenneturvallisuus, Empirical Bayes, musta piste, negatiivinen binomimalli, yleistetty lineaarinen malli