Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorNajafi, Arsalanen_US
dc.contributor.authorMarzband, Mousaen_US
dc.contributor.authorMohammadi-Ivatloo, Behnamen_US
dc.contributor.authorContreras, Javieren_US
dc.contributor.authorPourakbari-Kasmaei, Mahdien_US
dc.contributor.authorLehtonen, Mattien_US
dc.contributor.authorGodina, Raduen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorPower Systems and High Voltage Engineeringen
dc.contributor.organizationIslamic Azad Universityen_US
dc.contributor.organizationNorthumbria Universityen_US
dc.contributor.organizationUniversity of Tabrizen_US
dc.contributor.organizationUniversity of Castilla-La Manchaen_US
dc.contributor.organizationNOVA University Lisbonen_US
dc.date.accessioned2019-05-06T09:06:09Z
dc.date.available2019-05-06T09:06:09Z
dc.date.issued2019-04-12en_US
dc.description.abstractEnergy hub (EH) is a concept that is commonly used to describe multi-carrier energy systems. New advances in the area of energy conversion and storage have resulted in the development of EHs. The efficiency and capability of power systems can be improved by using EHs. This paper proposes an Information Gap Decision Theory (IGDT)-based model for EH management, taking into account the demand response (DR). The proposed model is applied to a semi-realistic case study with large consumers within a day ahead of the scheduling time horizon. The EH has some inputs including real-time (RT) and day-ahead (DA) electricity market prices, wind turbine generation, and natural gas network data. It also has electricity and heat demands as part of the output. The management of the EH is investigated considering the uncertainty in RT electricity market prices and wind turbine generation. The decisions are robust against uncertainties using the IGDT method. DR is added to the decision-making process in order to increase the flexibility of the decisions made. The numerical results demonstrate that considering DR in the IGDT-based EH management system changes the decision-making process. The results of the IGDT and stochastic programming model have been shown for more comprehension.en
dc.description.versionPeer revieweden
dc.format.extent20
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationNajafi, A, Marzband, M, Mohammadi-Ivatloo, B, Contreras, J, Pourakbari-Kasmaei, M, Lehtonen, M & Godina, R 2019, ' Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response ', Energies, vol. 12, no. 8, 1413 . https://doi.org/10.3390/en12081413en
dc.identifier.doi10.3390/en12081413en_US
dc.identifier.issn1996-1073
dc.identifier.otherPURE UUID: 1a1e7c00-bd9e-47b5-bc14-632b8188633aen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/1a1e7c00-bd9e-47b5-bc14-632b8188633aen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85065464224&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/33354306/ELEC_Najafi_etal_Uncertainty_Based_Models_for_Optima_Energies_12_8_1413.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/37606
dc.identifier.urnURN:NBN:fi:aalto-201905062726
dc.language.isoenen
dc.publisherMDPI AG
dc.relation.ispartofseriesEnergiesen
dc.relation.ispartofseriesVolume 12, issue 8en
dc.rightsopenAccessen
dc.subject.keyworddemand responseen_US
dc.subject.keywordenergy huben_US
dc.subject.keywordinformation gap decision theoryen_US
dc.subject.keywordstochastic programmingen_US
dc.subject.keywordEnergy huben_US
dc.subject.keywordDemand responseen_US
dc.subject.keywordInformation gap decision theoryen_US
dc.subject.keywordStochastic programmingen_US
dc.titleUncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Responseen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files