Stream Processing Systems Benchmark: StreamBench
Loading...
URL
Journal Title
Journal ISSN
Volume Title
Perustieteiden korkeakoulu |
Master's thesis
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Authors
Date
2016-06-13
Department
Major/Subject
Foundations of Advanced Computing
Mcode
SCI3014
Degree programme
Master’s Programme in Foundations of Advanced Computing (FAdCo)
Language
en
Pages
59
Series
Abstract
Batch processing technologies (Such as MapReduce, Hive, Pig) have matured and been widely used in the industry. These systems solved the issue processing big volumes of data successfully. However, first big amount of data need to be collected and stored in a database or file system. That is very time-consuming. Then it takes time to finish batch processing analysis jobs before get any results. While there are many cases that need analysed results from unbounded sequence of data in seconds or sub-seconds. To satisfy the increasing demand of processing such streaming data, several streaming processing systems are implemented and widely adopted, such as Apache Storm, Apache Spark, IBM InfoSphere Streams, and Apache Flink. They all support online stream processing, high scalability, and tasks monitoring. While how to evaluate stream processing systems before choosing one in production development is an open question. In this thesis, we introduce StreamBench, a benchmark framework to facilitate performance comparisons of stream processing systems. A common API component and a core set of workloads are defined. We implement the common API and run benchmarks for three widely used open source stream processing systems: Apache Storm, Flink, and Spark Streaming. A key feature of the StreamBench framework is that it is extensible -- it supports easy definition of new workloads, in addition to making it easy to benchmark new stream processing systems.Description
Supervisor
Gionis, AristidesThesis advisor
De Francisci Morales, GianmarcoKeywords
big data, stream processing, benchmark, distributed system