A machine learning-based method for simulation of ship speed profile in a complex ice field

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2020-10-20

Major/Subject

Mcode

Degree programme

Language

en

Pages

7
974-980

Series

Ships and Offshore Structures, Volume 15, issue 9

Abstract

Computational methods for predicting ship speed profile in a complex ice field have traditionally relied on mechanistic simulations. However, such methods have difficulties capturing the entire complexity of ship–ice interaction process due to the incomplete understanding of the underlying physical phenomena. Therefore, data-driven approaches have recently gained increased attention in this context. Hence, this paper proposes a concept of a first machine learning-based simulator of ship speed profile in a complex ice field. The developed approach suggests using supervised machine learning to trace a function mapping several ship and ice parameters to the ship acceleration/deceleration between the two adjacent points along the route. The simulator is trained and tested on a dataset obtained from the full-scale tests of an icebreaking ship. The results show high accuracy of the developed method, with an average error of the simulated ship speed against the measured one ranging from 2.6% to 9.4%.

Description

Keywords

Artificial neural network, machine learning, ship ice transit simulations, ship resistance in ice, ship speed profile in ice

Other note

Citation

Milaković, A S, Li, F, Marouf, M & Ehlers, S 2020, ' A machine learning-based method for simulation of ship speed profile in a complex ice field ', Ships and Offshore Structures, vol. 15, no. 9, pp. 974-980 . https://doi.org/10.1080/17445302.2019.1697075