Study of the Data Augmentation Approach for Building Energy Prediction beyond Historical Scenarios
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2023-02
Major/Subject
Mcode
Degree programme
Language
en
Pages
20
Series
Buildings, Volume 13, issue 2
Abstract
Building energy consumption predictive modeling using data-driven machine learning is currently highly prevalent. However, the model typically performs poorly when the predicted day’s energy consumption exceeds the upper bound of the historical data. In this study, energy consumption projections are examined outside of historical boundary scenarios, including three occupancy behavior data (HVAC system, lighting, and equipment) and three operating future scenarios (Scenario 1: utilization rate is highest simultaneously; Scenario 2: energy-saving lighting renovation; Scenario 3: the number of people working is decreased). We propose using data augmentation based on the occupancy behavior (DAOB) method, which expands the building’s three occupancy behaviors. The case study showed that, among the three future operating scenario prediction tasks, scenario 1’s performance was the least accurate, with an average relative error of 50.21% compared to the DAOB method’s average relative error of 7.07%. The average relative error in Scenario 2 decreased from 15.83% to 10.10%. The average relative error in Scenario 3 decreased from 20.97% to 6.5%. This provided an efficient method of combining physical models with data-driven models, which significantly increased robustness and reliability of the model.Description
Keywords
energy consumption prediction, data augmentation, data-driven, physical simulation, beyond historical scenarios
Other note
Citation
Haizhou, F, Tan, H, Kosonen, R, Yuan, X, Jiang, K & Ding, R 2023, ' Study of the Data Augmentation Approach for Building Energy Prediction beyond Historical Scenarios ', Buildings, vol. 13, no. 2, 326 . https://doi.org/10.3390/buildings13020326