Servo Health Monitoring Based on Feature Learning via Deep Neural Network

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorZhou, Yajing
dc.contributor.authorZheng, Yuemin
dc.contributor.authorTao, Jin
dc.contributor.authorSun, Mingwei
dc.contributor.authorSun, Qinglin
dc.contributor.authorDehmer, Matthias
dc.contributor.authorChen, Zengqiang
dc.contributor.departmentNankai University
dc.contributor.departmentRobotic Instruments
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.date.accessioned2021-12-15T07:20:36Z
dc.date.available2021-12-15T07:20:36Z
dc.date.issued2021-12
dc.descriptionPublisher Copyright: Author
dc.description.abstractAs the core actuator of an aircraft's flight control system, the servos' reliability directly affects the safety of the flight control system and the whole aircraft. The failure of the rudder will lead to the poor control effect of aircraft, affect its flight quality and safety, and even cause major flight accidents. In order to monitor the health status of servo and determine the fault and its degree accurately, this paper presents a feature learning based health monitoring method using a deep neural network. Firstly, we combine the wavelet packet decomposition and support vector machine to synthesize the sample segment label. And then, the sliding window is employed to enlarge the sample size, and the auto-encoder is utilized to reduce the data dimension. Moreover, the Softmax classifier is used for health monitoring. At last, the numerical simulations demonstrate the effectiveness of the proposed method.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.mimetypeapplication/pdf
dc.identifier.citationZhou , Y , Zheng , Y , Tao , J , Sun , M , Sun , Q , Dehmer , M & Chen , Z 2021 , ' Servo Health Monitoring Based on Feature Learning via Deep Neural Network ' , IEEE Access , vol. 9 , pp. 160887-160896 . https://doi.org/10.1109/ACCESS.2021.3132046en
dc.identifier.doi10.1109/ACCESS.2021.3132046
dc.identifier.issn2169-3536
dc.identifier.otherPURE UUID: 1595f426-662e-4652-a61d-4976924746f3
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/1595f426-662e-4652-a61d-4976924746f3
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85120572654&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/76807576/ELEC_Zhou_etal_Servo_Health_Monitoring_Based_on_Feature_Learning_IEEE_Access_2021.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/111540
dc.identifier.urnURN:NBN:fi:aalto-2021121510681
dc.language.isoenen
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.relation.ispartofseriesIEEE Accessen
dc.relation.ispartofseriesVolume 9en
dc.rightsopenAccessen
dc.subject.keywordAuto-encoder
dc.subject.keywordHealth monitoring
dc.subject.keywordServo health
dc.subject.keywordSoftmax classifier
dc.subject.keywordWavelet packet decomposition
dc.titleServo Health Monitoring Based on Feature Learning via Deep Neural Networken
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files