Tunable magnetoplasmonics in lattices of Ni/SiO2/Au dimers
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2019-07-09
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
1-11
Series
Scientific Reports, Volume 9, issue 1
Abstract
We present a systematic study on the optical and magneto-optical properties of Ni/SiO2/Au dimer lattices. By considering the excitation of orthogonal dipoles in the Ni and Au nanodisks, we analytically demonstrate that the magnetoplasmonic response of dimer lattices is governed by a complex interplay of near- and far-field interactions. Near-field coupling between dipoles in Ni and low-loss Au enhances the polarizabilty of single dimers compared to that of isolated Ni nanodisks. Far-field diffractive coupling in periodic lattices of these two particle types enlarges the difference in effective polarizability further. This effect is explained by an inverse relationship between the damping of collective surface lattice resonances and the imaginary polarizability of individual scatterers. Optical reflectance measurements, magneto-optical Kerr effect spectra, and finite-difference time-domain simulations confirm the analytical results. Hybrid dimer arrays supporting intense plasmon excitations are a promising candidate for active magnetoplasmonic devices.Description
| openaire: EC/H2020/737093/EU//FEMTOTERABYTE
Keywords
Other note
Citation
Pourjamal, S, Kataja, M, Maccaferri, N, Vavassori, P & van Dijken, S 2019, ' Tunable magnetoplasmonics in lattices of Ni/SiO 2 /Au dimers ', Scientific Reports, vol. 9, no. 1, 9907, pp. 1-11 . https://doi.org/10.1038/s41598-019-46058-2