Neural Grey-Box Guitar Amplifier Modelling With Limited Data
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Miklanek, Stepan | en_US |
dc.contributor.author | Wright, Alec | en_US |
dc.contributor.author | Välimäki, Vesa | en_US |
dc.contributor.author | Schimmel, Jiri | en_US |
dc.contributor.department | Department of Information and Communications Engineering | en |
dc.contributor.editor | Fontana, Federico | en_US |
dc.contributor.editor | Willemsen, Silvin | en_US |
dc.contributor.groupauthor | Audio Signal Processing | en |
dc.contributor.organization | Brno University of Technology | en_US |
dc.date.accessioned | 2023-10-11T09:35:33Z | |
dc.date.available | 2023-10-11T09:35:33Z | |
dc.date.issued | 2023-09-04 | en_US |
dc.description.abstract | This paper combines recurrent neural networks (RNNs) with the discretised Kirchhoff nodal analysis (DK-method) to create a grey-box guitar amplifier model. Both the objective and subjective results suggest that the proposed model is able to outperform a baseline black-box RNN model in the task of modelling a guitar amplifier, including realistically recreating the behaviour of the amplifier equaliser circuit, whilst requiring significantly less training data. Furthermore, we adapt the linear part of the DK-method in a deep learning scenario to derive multiple state-space filters simultaneously. We frequency sample the filter transfer functions in parallel and perform frequency domain filtering to considerably reduce the required training times compared to recursive state-space filtering. This study shows that it is a powerful idea to separately model the linear and nonlinear parts of a guitar amplifier using supervised learning. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 8 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Miklanek, S, Wright, A, Välimäki, V & Schimmel, J 2023, Neural Grey-Box Guitar Amplifier Modelling With Limited Data . in F Fontana & S Willemsen (eds), Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23) . Proceedings of the International Conference on Digital Audio Effects, Aalborg University, Copenhagen, Denmark, pp. 151-158, International Conference on Digital Audio Effects, Copenhagen, Denmark, 04/09/2023 . | en |
dc.identifier.issn | 2413-6689 | |
dc.identifier.other | PURE UUID: 8661cb32-cf13-4824-97ab-26b6f0742f94 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/8661cb32-cf13-4824-97ab-26b6f0742f94 | en_US |
dc.identifier.other | PURE LINK: https://dafx23.create.aau.dk/wp-content/uploads/2023/09/DAFX23_Proceedings.pdf | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/123416084/Miklanek2023_Neural_grey_box_guitar_amp.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/123916 | |
dc.identifier.urn | URN:NBN:fi:aalto-202310116263 | |
dc.language.iso | en | en |
dc.relation.ispartof | International Conference on Digital Audio Effects | en |
dc.relation.ispartofseries | Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23) | en |
dc.relation.ispartofseries | pp. 151-158 | en |
dc.relation.ispartofseries | Proceedings of the International Conference on Digital Audio Effects | en |
dc.rights | openAccess | en |
dc.rights.copyright | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, adaptation, and reproduction in any medium, provided the original author and source are credited. | |
dc.subject.keyword | Audio signal processing | en_US |
dc.subject.keyword | deep learning | en_US |
dc.subject.keyword | digital filter design | en_US |
dc.title | Neural Grey-Box Guitar Amplifier Modelling With Limited Data | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | publishedVersion |