Neural Grey-Box Guitar Amplifier Modelling With Limited Data

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMiklanek, Stepanen_US
dc.contributor.authorWright, Alecen_US
dc.contributor.authorVälimäki, Vesaen_US
dc.contributor.authorSchimmel, Jirien_US
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.editorFontana, Federicoen_US
dc.contributor.editorWillemsen, Silvinen_US
dc.contributor.groupauthorAudio Signal Processingen
dc.contributor.organizationBrno University of Technologyen_US
dc.date.accessioned2023-10-11T09:35:33Z
dc.date.available2023-10-11T09:35:33Z
dc.date.issued2023-09-04en_US
dc.description.abstractThis paper combines recurrent neural networks (RNNs) with the discretised Kirchhoff nodal analysis (DK-method) to create a grey-box guitar amplifier model. Both the objective and subjective results suggest that the proposed model is able to outperform a baseline black-box RNN model in the task of modelling a guitar amplifier, including realistically recreating the behaviour of the amplifier equaliser circuit, whilst requiring significantly less training data. Furthermore, we adapt the linear part of the DK-method in a deep learning scenario to derive multiple state-space filters simultaneously. We frequency sample the filter transfer functions in parallel and perform frequency domain filtering to considerably reduce the required training times compared to recursive state-space filtering. This study shows that it is a powerful idea to separately model the linear and nonlinear parts of a guitar amplifier using supervised learning.en
dc.description.versionPeer revieweden
dc.format.extent8
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMiklanek, S, Wright, A, Välimäki, V & Schimmel, J 2023, Neural Grey-Box Guitar Amplifier Modelling With Limited Data . in F Fontana & S Willemsen (eds), Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23) . Proceedings of the International Conference on Digital Audio Effects, Aalborg University, Copenhagen, Denmark, pp. 151-158, International Conference on Digital Audio Effects, Copenhagen, Denmark, 04/09/2023 .en
dc.identifier.issn2413-6689
dc.identifier.otherPURE UUID: 8661cb32-cf13-4824-97ab-26b6f0742f94en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/8661cb32-cf13-4824-97ab-26b6f0742f94en_US
dc.identifier.otherPURE LINK: https://dafx23.create.aau.dk/wp-content/uploads/2023/09/DAFX23_Proceedings.pdfen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/123416084/Miklanek2023_Neural_grey_box_guitar_amp.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/123916
dc.identifier.urnURN:NBN:fi:aalto-202310116263
dc.language.isoenen
dc.relation.ispartofInternational Conference on Digital Audio Effectsen
dc.relation.ispartofseriesProceedings of the 26th International Conference on Digital Audio Effects (DAFx23)en
dc.relation.ispartofseriespp. 151-158en
dc.relation.ispartofseriesProceedings of the International Conference on Digital Audio Effectsen
dc.rightsopenAccessen
dc.rights.copyrightThis is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, adaptation, and reproduction in any medium, provided the original author and source are credited.
dc.subject.keywordAudio signal processingen_US
dc.subject.keyworddeep learningen_US
dc.subject.keyworddigital filter designen_US
dc.titleNeural Grey-Box Guitar Amplifier Modelling With Limited Dataen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files