Catalytic depolymerization of a lignin-rich corncob residue into aromatics in supercritical ethanol over an alumina-supported nimo alloy catalyst
Loading...
Access rights
openAccess
acceptedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
9
Series
Energy and Fuels, Volume 33, issue 9, pp. 8657-8665
Abstract
A one-pot process for the depolymerization of lignin-rich corncob residue (LRCR) is investigated in supercritical ethanol over an alumina-supported NiMo (NiMo/Al) alloy catalyst. The LRCR, as a major byproduct in the corncob enzymatic hydrolysis process, was completely liquefied and effectively transformed into aromatic compounds without the formation of tar or char under optimal reaction conditions. The reaction temperature, time, solvent, and initial hydrogen pressure have significant effects on the depolymerization of LRCR. The highest overall aromatic yield of 255.4 mg/g of LRCR with 57.9 wt % alkylphenols (e.g., 4-ethylphenol, 2,5-diethylphenol, and 2,6-diisopropylphenol) was achieved with an initial 27.6 bar (gauge) of hydrogen in supercritical ethanol at 320 °C for 7.5 h. The depolymerization of LRCR is also examined over Ni/γ-Al2O3, Mo/γ-Al2O3, and the physical mixture of these two catalysts. The NiMo/Al alloy catalyst exhibits much higher activity than that of other catalysts, and a synergistic effect between Ni and Mo active species is proposed. Furthermore, X-ray powder diffraction results show that the Mo1.24Ni0.76 alloy is expected to be an important active species for the depolymerization reaction.Description
Keywords
Other note
Citation
Bai, Y, Cui, K, Sang, Y, Wu, K, Yan, F, Mai, F, Ma, Z, Wen, Z, Chen, H, Chen, M & Li, Y 2019, 'Catalytic depolymerization of a lignin-rich corncob residue into aromatics in supercritical ethanol over an alumina-supported nimo alloy catalyst', Energy and Fuels, vol. 33, no. 9, pp. 8657-8665. https://doi.org/10.1021/acs.energyfuels.9b01457