Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Wilkinson, William | en_US |
dc.contributor.author | Särkkä, Simo | en_US |
dc.contributor.author | Solin, Arno | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.department | Department of Electrical Engineering and Automation | en |
dc.contributor.groupauthor | Helsinki Institute for Information Technology (HIIT) | en |
dc.contributor.groupauthor | Sensor Informatics and Medical Technology | en |
dc.contributor.groupauthor | Computer Science Professors | en |
dc.contributor.groupauthor | Computer Science - Artificial Intelligence and Machine Learning (AIML) | en |
dc.contributor.groupauthor | Professorship Solin A. | en |
dc.date.accessioned | 2023-06-05T04:41:55Z | |
dc.date.available | 2023-06-05T04:41:55Z | |
dc.date.issued | 2023-03 | en_US |
dc.description.abstract | We formulate natural gradient variational inference (VI), expectation propagation (EP), and posterior linearisation (PL) as extensions of Newton's method for optimising the parameters of a Bayesian posterior distribution. This viewpoint explicitly casts inference algorithms under the framework of numerical optimisation. We show that common approximations to Newton's method from the optimisation literature, namely Gauss-Newton and quasi-Newton methods (e.g., the BFGS algorithm), are still valid under this 'Bayes-Newton' framework. This leads to a suite of novel algorithms which are guaranteed to result in positive semi-definite (PSD) covariance matrices, unlike standard VI and EP. Our unifying viewpoint provides new insights into the connections between various inference schemes. All the presented methods apply to any model with a Gaussian prior and non-conjugate likelihood, which we demonstrate with (sparse) Gaussian processes and state space models. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 1−50 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Wilkinson, W, Särkkä, S & Solin, A 2023, ' Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees ', Journal of Machine Learning Research, vol. 24, pp. 1−50 . < https://www.jmlr.org/papers/v24/21-1298.html > | en |
dc.identifier.issn | 1532-4435 | |
dc.identifier.issn | 1533-7928 | |
dc.identifier.other | PURE UUID: d051a2cd-8994-4026-97bc-5a00050254a6 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/d051a2cd-8994-4026-97bc-5a00050254a6 | en_US |
dc.identifier.other | PURE LINK: https://www.jmlr.org/papers/v24/21-1298.html | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/112116216/SCI_Wilkinson_etal_JMLR_2023.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/121226 | |
dc.identifier.urn | URN:NBN:fi:aalto-202306053607 | |
dc.language.iso | en | en |
dc.publisher | MICROTOME PUBL | |
dc.relation.ispartofseries | Journal of Machine Learning Research | en |
dc.relation.ispartofseries | Volume 24 | en |
dc.rights | openAccess | en |
dc.title | Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |