Bayesian cross-validation by parallel Markov chain Monte Carlo

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorCooper, Alexen_US
dc.contributor.authorVehtari, Akien_US
dc.contributor.authorForbes, Catherineen_US
dc.contributor.authorSimpson, Danen_US
dc.contributor.authorKennedy, Laurenen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML) - Research areaen
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorProfessorship Vehtari Akien
dc.contributor.organizationMonash University Australiaen_US
dc.contributor.organizationNormal Computingen_US
dc.date.accessioned2024-06-05T06:06:03Z
dc.date.available2024-06-05T06:06:03Z
dc.date.issued2024-08en_US
dc.descriptionPublisher Copyright: © The Author(s) 2024.
dc.description.abstractBrute force cross-validation (CV) is a method for predictive assessment and model selection that is general and applicable to a wide range of Bayesian models. Naive or ‘brute force’ CV approaches are often too computationally costly for interactive modeling workflows, especially when inference relies on Markov chain Monte Carlo (MCMC). We propose overcoming this limitation using massively parallel MCMC. Using accelerator hardware such as graphics processor units, our approach can be about as fast (in wall clock time) as a single full-data model fit. Parallel CV is flexible because it can easily exploit a wide range data partitioning schemes, such as those designed for non-exchangeable data. It can also accommodate a range of scoring rules. We propose MCMC diagnostics, including a summary of MCMC mixing based on the popular potential scale reduction factor (R^) and MCMC effective sample size (ESS^) measures. We also describe a method for determining whether an R^ diagnostic indicates approximate stationarity of the chains, that may be of more general interest for applications beyond parallel CV. Finally, we show that parallel CV and its diagnostics can be implemented with online algorithms, allowing parallel CV to scale up to very large blocking designs on memory-constrained computing accelerators.en
dc.description.versionPeer revieweden
dc.format.extent15
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationCooper, A, Vehtari, A, Forbes, C, Simpson, D & Kennedy, L 2024, ' Bayesian cross-validation by parallel Markov chain Monte Carlo ', STATISTICS AND COMPUTING, vol. 34, no. 4, 119, pp. 1-15 . https://doi.org/10.1007/s11222-024-10404-wen
dc.identifier.doi10.1007/s11222-024-10404-wen_US
dc.identifier.issn0960-3174
dc.identifier.otherPURE UUID: d9b2e421-5bfa-453e-b035-eacace3db090en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/d9b2e421-5bfa-453e-b035-eacace3db090en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85193813417&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/147281334/Bayesian_cross-validation_by_parallel_Markov_chain_Monte_Carlo.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/128533
dc.identifier.urnURN:NBN:fi:aalto-202406054126
dc.language.isoenen
dc.publisherSpringer
dc.relation.ispartofseriesSTATISTICS AND COMPUTINGen
dc.relation.ispartofseriesVolume 34, issue 4, pp. 1-15en
dc.rightsopenAccessen
dc.subject.keywordBayesian inferenceen_US
dc.subject.keywordConvergence diagnosticsen_US
dc.subject.keywordParallel computationen_US
dc.subject.keywordR^ statisticen_US
dc.titleBayesian cross-validation by parallel Markov chain Monte Carloen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files