Curriculum reinforcement learning via constrained optimal transport

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A4 Artikkeli konferenssijulkaisussa

Date

2022

Major/Subject

Mcode

Degree programme

Language

en

Pages

18

Series

Proceedings of the 39th International Conference on Machine Learning, Proceedings of Machine Learning Research, Volume 162

Abstract

Curriculum reinforcement learning (CRL) allows solving complex tasks by generating a tailored sequence of learning tasks, starting from easy ones and subsequently increasing their difficulty. Although the potential of curricula in RL has been clearly shown in a variety of works, it is less clear how to generate them for a given learning environment, resulting in a variety of methods aiming to automate this task. In this work, we focus on the idea of framing curricula as interpolations between task distributions, which has previously been shown to be a viable approach to CRL. Identifying key issues of existing methods, we frame the generation of a curriculum as a constrained optimal transport problem between task distributions. Benchmarks show that this way of curriculum generation can improve upon existing CRL methods, yielding high performance in a variety of tasks with different characteristics.

Description

Keywords

Other note

Citation

Klink, P, Yang, H, D'Eramo, C, Pajarinen, J & Peters, J 2022, Curriculum reinforcement learning via constrained optimal transport . in Proceedings of the 39th International Conference on Machine Learning . Proceedings of Machine Learning Research, vol. 162, JMLR, International Conference on Machine Learning, Baltimore, Maryland, United States, 17/07/2022 . < https://proceedings.mlr.press/v162/klink22a/klink22a.pdf >