Automatic Non-Contact Extraction and Independent Manipulation of Magnetic Particles Using Electromagnetic Needle

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2020-04

Major/Subject

Mcode

Degree programme

Language

en

Pages

11

Series

IEEE-ASME TRANSACTIONS ON MECHATRONICS

Abstract

Selective and independent manipulation of microparticles is important for a wide range of applications. Compared to other physical principles, magnetic field is promising due to its ability to penetrate most materials and affects only magnetic objects. However, in most non-contact magnetic manipulation systems, all particles in the workspace are moved simultaneously. This paper reports an automatic single-source non-contact magnetic manipulation technique that can selectively extract individual magnetic particles from a population of similar particles and then independently manipulate the extracted particles. We use an electromagnetic needle to create a highly localized magnetic field to achieve the local addressability. The motion of single particles is controlled by adjusting the position of the electromagnetic needle using visual servoing, where two control laws, velocity and position control, have been developed. Experimental results show that a predefined velocity vector can be followed accurately with a directional error of 8.5◦ and a norm error of 5 µm/s. Similarly, a predefined path can be followed with a position error of 0.5 µm. The capabilities of the proposed method has been demonstrated in four cases: selective extraction of a single particle from a population, separation of two magnetic particles with 11 µm initial gap, independent manipulation of four particles and targeted delivery of two particles onto two separate cells.

Description

Keywords

Magnetic devices, Magnetic forces, Automation, Motion control

Other note

Citation

Seon, J-A, Cenev, Z & Zhou, Q 2020, ' Automatic Non-Contact Extraction and Independent Manipulation of Magnetic Particles Using Electromagnetic Needle ', IEEE-ASME Transactions on Mechatronics, vol. 25, no. 2, 8936984, pp. 931-941 . https://doi.org/10.1109/TMECH.2019.2960860