Dysarthric speech classification from coded telephone speech using glottal features
No Thumbnail Available
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2019-07
Major/Subject
Mcode
Degree programme
Language
en
Pages
15
47-55
47-55
Series
Speech Communication, Volume 110
Abstract
This paper proposes a new dysarthric speech classification method from coded telephone speech using glottal features. The proposed method utilizes glottal features, which are efficiently estimated from coded telephone speech using a recently proposed deep neural net-based glottal inverse filtering method. Two sets of glottal features were considered: (1) time- and frequency-domain parameters and (2) parameters based on principal component analysis (PCA). In addition, acoustic features are extracted from coded telephone speech using the openSMILE toolkit. The proposed method utilizes both acoustic and glottal features extracted from coded speech utterances and their corresponding dysarthric/healthy labels to train support vector machine classifiers. Separate classifiers are trained using both individual, and the combination of glottal and acoustic features. The coded telephone speech used in the experiments is generated using the adaptive multi-rate codec, which operates in two transmission bandwidths: narrowband (300 Hz - 3.4 kHz) and wideband (50 Hz - 7 kHz). The experiments were conducted using dysarthric and healthy speech utterances of the TORGO and universal access speech (UA-Speech) databases. Classification accuracy results indicated the effectiveness of glottal features in the identification of dysarthria from coded telephone speech. The results also showed that the glottal features in combination with the openSMILE-based acoustic features resulted in improved classification accuracies, which validate the complementary nature of glottal features. The proposed dysarthric speech classification method can potentially be employed in telemonitoring application for identifying the presence of dysarthria from coded telephone speech.Description
Keywords
Dysarthric speech, glottal parameters, glottal source estimation, glottal inverse filtering, openSMILE, support vector machines, telemonitoring
Other note
Citation
Nonavinakere Prabhakera, N & Alku, P 2019, ' Dysarthric speech classification from coded telephone speech using glottal features ', Speech Communication, vol. 110, pp. 47-55 . https://doi.org/10.1016/j.specom.2019.04.003