Enhancing credit risk assessment models: insights from Scania Finance Korea's truck financing model
No Thumbnail Available
Files
bachelor_Ketola_Joel_2024.pdf (629.64 KB) (opens in new window)
Aalto login required (access for Aalto Staff only).
URL
Journal Title
Journal ISSN
Volume Title
School of Business |
Bachelor's thesis
Electronic archive copy is available locally at the Harald Herlin Learning Centre. The staff of Aalto University has access to the electronic bachelor's theses by logging into Aaltodoc with their personal Aalto user ID. Read more about the availability of the bachelor's theses.
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Authors
Date
2024
Department
Major/Subject
Mcode
Degree programme
(Mikkeli) Bachelor’s Program in International Business
Language
en
Pages
32+11
Series
Abstract
This thesis presents a comprehensive examination of the factors used in the credit rating model employed by Scania Finance Korea, focusing on its application in the truck financing sector. The study identifies key variables that significantly influence creditworthiness. Utilizing linear regression and bootstrapped regression techniques, this thesis assesses the predictive capabilities of the factors. The findings highlight the importance of non-financial variables and the need for refining credit risk assessment methods to enhance their predictive accuracy and reliability.Tämä tutkielma tarjoaa kattavan tarkastelun tekijöistä, joita käytetään Scania Finance Korean luottoluokitusmallissa, keskittyen sen soveltamiseen kuormaautorahoituksessa. Tutkimus tunnistaa keskeiset muuttujat, jotka vaikuttavat merkittävästi luottokelpoisuuteen. Käyttäen lineaarista regressiota ja bootstrap-regressiomenetelmiä, tämä tutkielma arvioi tekijöiden ennustekykyä. Löydökset korostavat ei-taloudellisten muuttujien tarvetta ja tarvetta tarkentaa luottoriskien arviointimenetelmiä niiden ennustetarkkuuden ja luotettavuuden parantamiseksi.Description
Thesis advisor
Pham, LinhKeywords
truck financing, factors in credit rating models, default, credit rating model