Bridge Frequency Scanning Using the Contact-Point Response of an Instrumented 3D Vehicle: Theory and Numerical Simulation
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Authors
Date
2023-06-30
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
23
Series
Structural Control and Health Monitoring, Volume 2023
Abstract
Scanning the bridge’s frequencies from the passing vehicle’s vibration data has been frequently investigated recently. However, in previous studies, vehicles were typically simplified to quarter- or half-car models, and apparent disparity could be observed between the models and real vehicles. To make the vehicle model more practical, in this study, a 3D vehicle model is built to extract the bridge’s frequencies from vehicle vibrations. For the first time, equations for calculating the contact-point (CP) response of the 3D vehicle model are derived with tire damping. Furthermore, residual CP responses between front and rear wheels are utilized to eliminate the inverse effects of road roughness, making the bridge frequencies outstanding in the frequency domain. The robustness of the proposed method is tested under different influence factors, and two possible measurement errors are as follows: the sensor position and axle distance when applying the proposed method in engineering. Results show that the proposed method performs stably under the influence of different road roughness classes and tire damping. Bridge frequencies can be identified when the vehicle is travelling at a highway speed (108 km/h in this study). Environmental noises can submerge the bridge’s high-order frequencies but have little influence on the low-frequency range. High bridge damping will restrain the transmission of bridge vibration to the vehicle, making high-order bridge frequencies less visible. In addition, the errors introduced by a vehicle body sensor position can be eliminated when calculating the CP responses for tires, thus will not influence bridge frequency identification. To avoid possible errors induced by manual measurement of the axle distance, a novel cross-correlation function-based method is employed, which is verified effective and practical for calculating residual CP responses.Description
Keywords
Frequency identification, 3D vehicle, Contact point, Vehicle scanning method
Other note
Citation
Li, Z, Lin, W & Zhang, Y 2023, ' Bridge Frequency Scanning Using the Contact-Point Response of an Instrumented 3D Vehicle: Theory and Numerical Simulation ', Structural Control and Health Monitoring, vol. 2023, 3924349 . https://doi.org/10.1155/2023/3924349