PbSO4 Reduction Mechanism and Gas Composition at 600–1000°C

No Thumbnail Available

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2021-03

Major/Subject

Mcode

Degree programme

Language

en

Pages

11

Series

JOM

Abstract

A promising lead-containing waste recycling method, with sulfur conservation and reductive sulfur-fixing co-smelting process (RSFCS), is proposed. This work investigated the PbSO4 reduction equilibrium composition, phase conversions, and microscopic transformation mechanisms during the RSFCS process at different temperatures, times, and CO-CO2 mixtures using thermodynamic modeling, thermogravimetric analysis, x-ray diffraction, and SEM-EDS analysis techniques. At the same time, the gaseous products were collected and analyzed. The results showed that three reduction paths existed: (1) PbSO4→CO/CO2 PbO·PbSO4+SO2→CO/CO2 2PbO·PbSO4+SO2→CO/CO2 4PbO·PbSO4+SO2→CO/CO2 PbO+SO2→CO/CO2 Pb; (2) PbSO4→CO/CO2 PbS; (3) PbSO4 → PbO·PbSO4+SO3 → 2PbO·PbSO4+SO3 → 4PbO·PbSO4+SO3 → PbO+SO3. Reduction temperature and CO concentration were determined as major factors in the PbSO4 reduction. In a relatively weak reductive atmosphere and at low temperature, xPbO·PbSO4 (x = 1, 2, 4), PbO, Pb, and SO2 were the major products. When temperature and the CO concentration increased, PbSO4 was selectively reduced to PbS, with sulfur in the PbSO4 fixed in PbS, instead of emitting SO2/SO3.

Description

Keywords

Other note

Citation

Li, Y, Taskinen, P, Wang, Y, Yang, S, Tang, C, Chen, Y & Jokilaakso, A 2021, ' PbSO 4 Reduction Mechanism and Gas Composition at 600–1000°C ', JOM, vol. 73, no. 3, pp. 881-891 . https://doi.org/10.1007/s11837-020-04551-4