Atorvastatin induces adrenal androgen downshift in men with prostate cancer: A post Hoc analysis of a pilot adaptive Randomised clinical trial
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2021-06
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
EBioMedicine, Volume 68
Abstract
Background: Prostate cancer (PCa) progression depends on androgen receptor activity. Cholesterol is required for biosynthesis of all steroid hormones, including androgens. Impact of cholesterol-lowering statins on androgens is unknown. We explored atorvastatin influence on serum and prostatic tissue steroidomic profiles (SP) to expose novel pathways for limiting androgen concentration in men with PCa. Methods: This is a pre-planned post hoc analysis of ESTO-1 pilot randomised, double-blinded, clinical trial. Statin naïve men, scheduled for radical prostatectomy due to localised PCa, were randomised 1:1 to use daily 80 mg of atorvastatin or placebo before the surgery for a median of 28 days. Participants were recruited and treated at the Pirkanmaa Hospital District, Tampere, Finland. 108 of the 158 recruited men were included in the analysis based on sample availability for hormone profiling. Serum and prostatic tissue steroid profiles were determined using liquid chromatography mass spectrometry. Wilcoxon rank sum test and bootstrap confidence intervals (CI) were used to analyse the difference between placebo and atorvastatin arms. Findings: Most serum and prostatic steroids, including testosterone and dihydrotestosterone, were not associated with atorvastatin use. However, atorvastatin use induced serum SP changes in 11-ketoandrostenedione (placebo 960pM, atorvastatin 617.5pM, p-value <0.0001, median difference -342.5; 95% CI -505.23 – -188.98). In the prostatic tissue, atorvastatin was associated with plausible downshift in 11- ketodihydrotestosterone (placebo 25.0pM in 100 mg tissue/1 mL saline, atorvastatin 18.5pM in 100 mg tissue/1 mL saline, p-value 0.027, median difference -6.53; 95% CI -12.8 – -0.29); however, this association diminished after adjusting for multiple testing. No serious harms were reported. Interpretation: Atorvastatin was associated with adrenal androgen downshift in the serum and possibly in the prostate. The finding warrants further investigation whether atorvastatin could improve androgen deprivation therapy efficacy. Funding: Funded by grants from the Finnish Cultural Foundation, Finnish Cancer Society, Academy of Finland, and the Expert Responsibility Area of the Tampere University Hospital. Clinicaltrials.gov identifier: NCT01821404.Description
Keywords
Other note
Citation
Raittinen, P, Syvälä, H, Tammela, T L J, Häkkinen, M, Ilmonen, P, Auriola, S & Murtola, T J 2021, ' Atorvastatin induces adrenal androgen downshift in men with prostate cancer: A post Hoc analysis of a pilot adaptive Randomised clinical trial ', EBioMedicine, vol. 68, 103432 . https://doi.org/10.1016/j.ebiom.2021.103432