Tensor network complexity of multilinear maps

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorAustrin, Peren_US
dc.contributor.authorKaski, Petterien_US
dc.contributor.authorKubjas, Kaieen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.departmentDepartment of Mathematics and Systems Analysisen
dc.contributor.editorBlum, Avrimen_US
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorProfessorship Kaski Petterien
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Algorithms and Theoretical Computer Science (TCS)en
dc.contributor.groupauthorMathematical Statistics and Data Scienceen
dc.contributor.groupauthorAlgebra and Discrete Mathematicsen
dc.date.accessioned2019-08-15T08:23:23Z
dc.date.available2019-08-15T08:23:23Z
dc.date.issued2019-01-01en_US
dc.description| openaire: EC/H2020/338077/EU//TAPEASE | openaire: EC/H2020/748354/EU//NonnegativeRank
dc.description.abstractWe study tensor networks as a model of arithmetic computation for evaluating multilinear maps. These capture any algorithm based on low border rank tensor decompositions, such as O(nω+ϵ) time matrix multiplication, and in addition many other algorithms such as O(nlog n) time discrete Fourier transform and O∗(2n) time for computing the permanent of a matrix. However tensor networks sometimes yield faster algorithms than those that follow from low-rank decompositions. For instance the fastest known O(n(ω+ϵ)t) time algorithms for counting 3t-cliques can be implemented with tensor networks, even though the underlying tensor has border rank n3t for all t ≥ 2. For counting homomorphisms of a general pattern graph P into a host graph on n vertices we obtain an upper bound of O(n(ω+ϵ) bw(P)/2) where bw(P) is the branchwidth of P. This essentially matches the bound for counting cliques, and yields small improvements over previous algorithms for many choices of P. While powerful, the model still has limitations, and we are able to show a number of unconditional lower bounds for various multilinear maps, including: (a) an Ω(nbw(P)) time lower bound for counting homomorphisms from P to an n-vertex graph, matching the upper bound if ω = 2. In particular for P a v-clique this yields an Ω(nd2v/3e) time lower bound for counting v-cliques, and for P a k-uniform v-hyperclique we obtain an Ω(nv) time lower bound for k ≥ 3, ruling out tensor networks as an approach to obtaining non-trivial algorithms for hyperclique counting and the Max-3-CSP problem. (b) an Ω(20.918n) time lower bound for the permanent of an n × n matrix.en
dc.description.versionPeer revieweden
dc.format.extent1-21
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationAustrin, P, Kaski, P & Kubjas, K 2019, Tensor network complexity of multilinear maps . in A Blum (ed.), 10th Innovations in Theoretical Computer Science, ITCS 2019 ., 7, Leibniz International Proceedings in Informatics, LIPIcs, vol. 124, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 1-21, Innovations in Theoretical Computer Science Conference, San Diego, California, United States, 10/01/2019 . https://doi.org/10.4230/LIPIcs.ITCS.2019.7en
dc.identifier.doi10.4230/LIPIcs.ITCS.2019.7en_US
dc.identifier.isbn9783959770958
dc.identifier.issn1868-8969
dc.identifier.otherPURE UUID: 5a5435ca-5030-4f5f-8a8d-3b3c6bb4f941en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/5a5435ca-5030-4f5f-8a8d-3b3c6bb4f941en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85069528130&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/36033060/LIPIcs_ITCS_2019_7.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/39676
dc.identifier.urnURN:NBN:fi:aalto-201908154721
dc.language.isoenen
dc.publisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/748354/EU//NonnegativeRanken_US
dc.relation.ispartofInnovations in Theoretical Computer Science Conferenceen
dc.relation.ispartofseries10th Innovations in Theoretical Computer Science, ITCS 2019en
dc.relation.ispartofseriesLeibniz International Proceedings in Informatics, LIPIcsen
dc.relation.ispartofseriesVolume 124en
dc.rightsopenAccessen
dc.subject.keywordArithmetic complexityen_US
dc.subject.keywordLower bounden_US
dc.subject.keywordMultilinear mapen_US
dc.subject.keywordTensor networken_US
dc.titleTensor network complexity of multilinear mapsen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files