Exploring the optimality of approximate state preparation quantum circuits with a genetic algorithm
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Rindell, Tom | en_US |
dc.contributor.author | Yenilen, Berat | en_US |
dc.contributor.author | Halonen, Niklas | en_US |
dc.contributor.author | Pönni, Arttu | en_US |
dc.contributor.author | Tittonen, Ilkka | en_US |
dc.contributor.author | Raasakka, Matti | en_US |
dc.contributor.department | Department of Electronics and Nanoengineering | en |
dc.contributor.groupauthor | Ilkka Tittonen Group | en |
dc.contributor.organization | Ilkka Tittonen Group | en_US |
dc.contributor.organization | RWTH Aachen University | en_US |
dc.contributor.organization | Aalto University | en_US |
dc.date.accessioned | 2023-05-10T06:30:06Z | |
dc.date.available | 2023-05-10T06:30:06Z | |
dc.date.issued | 2023-05 | en_US |
dc.description.abstract | We study the approximate state preparation problem on noisy intermediate-scale quantum (NISQ) computers by applying a genetic algorithm to generate quantum circuits for state preparation. The algorithm can account for the specific characteristics of the physical machine in the evaluation of circuits, such as the native gate set and qubit connectivity. We use our genetic algorithm to optimize the circuits provided by the low-rank state preparation algorithm introduced by Araujo et al., and find substantial improvements to the fidelity in preparing Haar random states with a limited number of CNOT gates. Moreover, we observe that already for a 5-qubit quantum processor with limited qubit connectivity and significant noise levels (IBM Falcon 5T), the maximal fidelity for Haar random states is achieved by a short approximate state preparation circuit instead of the exact preparation circuit. We also present a theoretical analysis of approximate state preparation circuit complexity to motivate our findings. Our genetic algorithm for quantum circuit discovery is freely available at https://github.com/beratyenilen/qc-ga. | en |
dc.description.version | Peer reviewed | en |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Rindell, T, Yenilen, B, Halonen, N, Pönni, A, Tittonen, I & Raasakka, M 2023, ' Exploring the optimality of approximate state preparation quantum circuits with a genetic algorithm ', Physics Letters A, vol. 475, 128860 . https://doi.org/10.1016/j.physleta.2023.128860 | en |
dc.identifier.doi | 10.1016/j.physleta.2023.128860 | en_US |
dc.identifier.issn | 0375-9601 | |
dc.identifier.other | PURE UUID: cf62c95c-392c-4b75-b512-ce660b8f2fdf | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/cf62c95c-392c-4b75-b512-ce660b8f2fdf | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85153681999&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/107926323/Rindell_Exploring_optimality_PhysLetA.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/120719 | |
dc.identifier.urn | URN:NBN:fi:aalto-202305103057 | |
dc.language.iso | en | en |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Physics Letters A | en |
dc.relation.ispartofseries | Volume 475 | en |
dc.rights | openAccess | en |
dc.subject.keyword | quantum state preparation | en_US |
dc.subject.keyword | genetic algorithm | en_US |
dc.subject.keyword | quantum circuit complexity | en_US |
dc.subject.keyword | noisy intermediate-scale quantum | en_US |
dc.subject.keyword | NISQ | en_US |
dc.title | Exploring the optimality of approximate state preparation quantum circuits with a genetic algorithm | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |