Exploring the optimality of approximate state preparation quantum circuits with a genetic algorithm

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorRindell, Tomen_US
dc.contributor.authorYenilen, Beraten_US
dc.contributor.authorHalonen, Niklasen_US
dc.contributor.authorPönni, Arttuen_US
dc.contributor.authorTittonen, Ilkkaen_US
dc.contributor.authorRaasakka, Mattien_US
dc.contributor.departmentDepartment of Electronics and Nanoengineeringen
dc.contributor.groupauthorIlkka Tittonen Groupen
dc.contributor.organizationIlkka Tittonen Groupen_US
dc.contributor.organizationRWTH Aachen Universityen_US
dc.contributor.organizationAalto Universityen_US
dc.date.accessioned2023-05-10T06:30:06Z
dc.date.available2023-05-10T06:30:06Z
dc.date.issued2023-05en_US
dc.description.abstractWe study the approximate state preparation problem on noisy intermediate-scale quantum (NISQ) computers by applying a genetic algorithm to generate quantum circuits for state preparation. The algorithm can account for the specific characteristics of the physical machine in the evaluation of circuits, such as the native gate set and qubit connectivity. We use our genetic algorithm to optimize the circuits provided by the low-rank state preparation algorithm introduced by Araujo et al., and find substantial improvements to the fidelity in preparing Haar random states with a limited number of CNOT gates. Moreover, we observe that already for a 5-qubit quantum processor with limited qubit connectivity and significant noise levels (IBM Falcon 5T), the maximal fidelity for Haar random states is achieved by a short approximate state preparation circuit instead of the exact preparation circuit. We also present a theoretical analysis of approximate state preparation circuit complexity to motivate our findings. Our genetic algorithm for quantum circuit discovery is freely available at https://github.com/beratyenilen/qc-ga.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationRindell, T, Yenilen, B, Halonen, N, Pönni, A, Tittonen, I & Raasakka, M 2023, ' Exploring the optimality of approximate state preparation quantum circuits with a genetic algorithm ', Physics Letters A, vol. 475, 128860 . https://doi.org/10.1016/j.physleta.2023.128860en
dc.identifier.doi10.1016/j.physleta.2023.128860en_US
dc.identifier.issn0375-9601
dc.identifier.otherPURE UUID: cf62c95c-392c-4b75-b512-ce660b8f2fdfen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/cf62c95c-392c-4b75-b512-ce660b8f2fdfen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85153681999&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/107926323/Rindell_Exploring_optimality_PhysLetA.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/120719
dc.identifier.urnURN:NBN:fi:aalto-202305103057
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesPhysics Letters Aen
dc.relation.ispartofseriesVolume 475en
dc.rightsopenAccessen
dc.subject.keywordquantum state preparationen_US
dc.subject.keywordgenetic algorithmen_US
dc.subject.keywordquantum circuit complexityen_US
dc.subject.keywordnoisy intermediate-scale quantumen_US
dc.subject.keywordNISQen_US
dc.titleExploring the optimality of approximate state preparation quantum circuits with a genetic algorithmen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files