Towards an optimal gradient-dependent energy functional of the PZ-SIC form

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJónsson, E.
dc.contributor.authorLehtola, S.
dc.contributor.authorJónsson, Hannes
dc.contributor.departmentDepartment of Applied Physicsen
dc.date.accessioned2017-05-11T09:08:30Z
dc.date.available2017-05-11T09:08:30Z
dc.date.issued2015
dc.description.abstractResults of Perdew–Zunger self-interaction corrected (PZ-SIC) density functional theory calculations of the atomization energy of 35 molecules are compared to those of high-level quantum chemistry calculations. While the PBE functional, which is commonly used in calculations of condensed matter, is known to predict on average too high atomization energy (overbinding of the molecules), the application of PZ-SIC gives a large overcorrection and leads to significant underestimation of the atomization energy. The exchange enhancement factor that is optimal for the generalized gradient approximation within the Kohn-Sham (KS) approach may not be optimal for the self-interaction corrected functional. The PBEsol functional, where the exchange enhancement factor was optimized for solids, gives poor results for molecules in KS but turns out to work better than PBE in PZ-SIC calculations. The exchange enhancement is weaker in PBEsol and the functional is closer to the local density approximation. Furthermore, the drop inthe exchange enhancement factor for increasing reduced gradient in the PW91 functional gives more accurate results than the plateaued enhancement in the PBE functional. A step towards an optimal exchange enhancement factor for a gradient dependent functional of the PZ-SIC form is taken by constructing an exchange enhancement factor that mimics PBEsol for small values of the reduced gradient, and PW91 for large values. The average atomization energy is then in closer agreement with the high-level quantum chemistry calculations, but the variance is still large, the F2 molecule being a notable outlier.en
dc.description.versionPeer revieweden
dc.format.extent1858-1864
dc.format.mimetypeapplication/pdf
dc.identifier.citationJónsson , E , Lehtola , S & Jónsson , H 2015 , ' Towards an optimal gradient-dependent energy functional of the PZ-SIC form ' , PROCEDIA COMPUTER SCIENCE , vol. 51 , pp. 1858-1864 . https://doi.org/10.1016/j.procs.2015.05.417en
dc.identifier.doi10.1016/j.procs.2015.05.417
dc.identifier.otherPURE UUID: d3277e4d-ef81-48f6-a627-2826ad4a9c9a
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/d3277e4d-ef81-48f6-a627-2826ad4a9c9a
dc.identifier.otherPURE LINK: http://www.sciencedirect.com/science/article/pii/S1877050915012259
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/11745582/1_s2.0_S1877050915012259_main.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/25878
dc.identifier.urnURN:NBN:fi:aalto-201705114253
dc.language.isoenen
dc.relation.ispartofseriesPROCEDIA COMPUTER SCIENCEen
dc.relation.ispartofseriesVolume 51en
dc.rightsopenAccessen
dc.subject.keyworddensity functional theory
dc.subject.keywordexchange correlation functionals
dc.subject.keywordself interaction correction
dc.titleTowards an optimal gradient-dependent energy functional of the PZ-SIC formen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files