On the Nanoscale Interactions and the Self-Assembly of Recombinant Proteins and Hybrid Nanostructures: an AFM Study

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorLaaksonen, Päivi, Prof., Häme University of Applied Sciences, Finland
dc.contributor.advisorPaananen, Arja, Dr., VTT Technical Research Centre, Finland
dc.contributor.authorGriffo, Alessandra
dc.contributor.departmentBiotuotteiden ja biotekniikan laitosfi
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.labGroup of Biomolecular Materialsen
dc.contributor.schoolKemian tekniikan korkeakoulufi
dc.contributor.schoolSchool of Chemical Technologyen
dc.contributor.supervisorLinder, Markus, Prof., Aalto University, Department of Bioproducts and Biosystems, Finland
dc.date.accessioned2019-08-01T09:01:20Z
dc.date.available2019-08-01T09:01:20Z
dc.date.defence2019-08-16
dc.date.issued2019
dc.description.abstractThe study presented in this Thesis is focussed on the characterization and the design of new polymeric materials, taking inspiration from the Nature. Here, new hybrid architectures in which adhesive and elastic proteins coexist with inorganic or cellulosic surfaces, or where ligand capped metal nanoclusters self-assemble in monolayer films, are investigated. Genetic engineering is used to produce new synthetic fusion proteins having specific functionalities starting from microbes. The particle self-assembly is indeed inspired on the symmetrical and directional arrangement of natural architectures such as globular proteins and viral capsids. The study is fundamental and performed at nanoscale level. Single molecular interactions on surfaces are analysed as well as the structure and the conformation of individual fusion proteins. The self-assembly process of protein films is deeply studied as well as the stiffness and elastic modulus of self-assembled silver nanocluster composite films. The candidate proteins for making biohybrids are hydrophobins, cellulose binding modules and resilins. Hydrophobins (HFB), with their unique assembly mechanism, are well known for their hydrophobic patch, that strongly bind to hydrophobic surfaces. Cellulose binding modules (CBMs), turned out to be highly interesting domains for their binding affinity to their primary substrate, the cellulose. On the other hand, resilin, for its ability to dissipate energy upon tensile stress, could find use as a sacrificial bond in high strength materials. Atomic force microscope (AFM) is here used for detecting the binding and interaction forces between proteins and surfaces. For the resilin, this such powerful tool is also used to characterize the length of the biopolymer under different environments, upon stretching. AFM was also employed for determining the elastic modulus of the nanocluster monolayers. According to the results achieved, HFBI ranged a quite high adhesion force value near 100 pN on the chosen hydrophobic surfaces, whereas the CBMs reported a binding affinity for different kind of cellulosic surfaces between 40-50 pN. The silver nanoclusters ligand-capped films revealed an elastic modulus value around 20 GPa. The Thesis sheds light on the importance of replacing plastic materials with new bio hybrids for a more sustainable approach, in an age where the ecosystem risks to be compromised by pollution and not biodegradable waste.en
dc.format.extent78 + app. 96
dc.format.mimetypeapplication/pdfen
dc.identifier.isbn978-952-60-8663-7 (electronic)
dc.identifier.isbn978-952-60-8662-0 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/39547
dc.identifier.urnURN:ISBN:978-952-60-8663-7
dc.language.isoenen
dc.opnBlank, Kerstin, Dr., Max Plank Institute of Colloids and Interfaces, Germany
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: Alessandra Griffo, Hendrik Hähl, Samuel Grandthyll, Frank Mϋller, Arja Paananen, Marja Ilmén, Géza R. Szilvay, Christopher P. Landowski, Merja Penttilä, Karin Jacobs, and Päivi Laaksonen "Single-Molecule Force Spectroscopy Study on Modular Resilin Fusion Protein" ACS Omega 2017, 2, 6906−6915. Full text in Aaltodoc / Acris: http://urn.fi/URN:NBN:fi:aalto-201711217601. DOI: 10.1021/acsomega.7b01133
dc.relation.haspart[Publication 2]: Alessandra Griffo, Bart J. M. Rooijakkers, Hendrik Hähl, Karin Jacobs, Markus B. Linder and Päivi Laaksonen. “Binding Forces of Cellulose Binding Modules on Cellulosic Nanomaterials". Biomacromolecules 2019, 20, 769−777. Full text in Aaltodoc / Acris: http://urn.fi/URN:NBN:fi:aalto-201905062763. DOI: 10.1021/acs.biomac.8b01346
dc.relation.haspart[Publication 3]: Anirban Som, Alessandra Griffo, Indranath Chakraborty, Hendrik Hähl, Karin Jacobs, Biswajit Mondal, Päivi Laaksonen, Olli Ikkala, Thalappil Pradeep, Nonappa, "Elastic monolayer membrane via hydrogen bonding directed self-assembly of atomically precise nanoparticles". Submitted in Science Advances.
dc.relation.haspart[Publication 4]: Hendrik Hähl, Alessandra Griffo, Neda Safaridekhone, Jonas Heppe, Sebastian Backes, Michael Lienemann, Markus B. Linder, Ludger Santen, Päivi Laaksonen and Karin Jacobs "Dynamic assembly of class II hydrophobins at air/water interface". Accepted in Langmuir, 2019.
dc.relation.ispartofseriesAalto University publication series DOCTORAL DISSERTATIONSen
dc.relation.ispartofseries140/2019
dc.revRuths, Marina, Prof., University of Massachuset Lowell, USA
dc.revHuber, Patrik, Prof., Hamburg University of Technology, Germany
dc.subject.keywordbiomimeticen
dc.subject.keywordforce spectroscopyen
dc.subject.keywordindentationen
dc.subject.keywordfusion proteinsen
dc.subject.keywordcelluloseen
dc.subject.keywordsilver nanoclustersen
dc.subject.otherBiotechnologyen
dc.titleOn the Nanoscale Interactions and the Self-Assembly of Recombinant Proteins and Hybrid Nanostructures: an AFM Studyen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.acrisexportstatuschecked 2019-10-05_0957
local.aalto.archiveyes
local.aalto.formfolder2019_07_31_klo_15_53

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
isbn9789526086637.pdf
Size:
6.72 MB
Format:
Adobe Portable Document Format