A smart ontology-based IoT framework for remote patient monitoring

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorSharma, Nonitaen_US
dc.contributor.authorMangla, Monikaen_US
dc.contributor.authorMohanty, Sachi Nandanen_US
dc.contributor.authorGupta, Deepaken_US
dc.contributor.authorTiwari, Prayagen_US
dc.contributor.authorShorfuzzaman, Mohammaden_US
dc.contributor.authorRawashdeh, Majdien_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.organizationDr. B.R. Ambedkar National Institute of Technologyen_US
dc.contributor.organizationLokmanya Tilak College of Engineeringen_US
dc.contributor.organizationGovernment College of Engineering Puneen_US
dc.contributor.organizationGuru Gobind Singh Indraprastha Universityen_US
dc.contributor.organizationTaif Universityen_US
dc.contributor.organizationPrincess Sumaya University for Technologyen_US
dc.date.accessioned2021-07-01T13:06:59Z
dc.date.available2021-07-01T13:06:59Z
dc.date.issued2021-07en_US
dc.descriptionFunding Information: This work was supported by the Taif University Researchers Supporting Project number (TURSP-2020/79), Taif University, Taif, Saudi Arabia. Publisher Copyright: © 2021 Elsevier Ltd
dc.description.abstractThe Internet of Things (IoT) is the most promising technology in health technology systems. IoT-based systems ensure continuous monitoring in indoor and outdoor settings. Remote monitoring has revolutionized healthcare by connecting remote and hard-to-reach regions. Specifically, during this COVID-19 pandemic, it is imperative to have a remote monitoring system to assess patients remotely and curb its spread prematurely. This paper proposes a framework that provides the updated information of the Corona Patients in the vicinity and thus provides identifiable data for remote monitoring of locality cohorts. The proposed model is IoT-based remote access and an alarm-enabled bio wearable sensor system for early detection of COVID-19 based on ontology method using sensory 1D Biomedical Signals such as ECG, PPG, temperature, and accelerometer. The proposed ontology-based remote monitoring system analyzes the challenges of encompassing security and privacy issues. The proposed model is also simulated using cooza simulator. During the simulation, it is observed that the proposed model achieves an accuracy of 96.33 %, which establishes the efficacy of the proposed model. The effectiveness of the proposed model is also strengthened by efficient power consumption.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationSharma, N, Mangla, M, Mohanty, S N, Gupta, D, Tiwari, P, Shorfuzzaman, M & Rawashdeh, M 2021, ' A smart ontology-based IoT framework for remote patient monitoring ', Biomedical Signal Processing and Control, vol. 68, 102717 . https://doi.org/10.1016/j.bspc.2021.102717en
dc.identifier.doi10.1016/j.bspc.2021.102717en_US
dc.identifier.issn1746-8094
dc.identifier.otherPURE UUID: 5f66b5de-6c21-4f1e-9c9f-5a7ef1607846en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/5f66b5de-6c21-4f1e-9c9f-5a7ef1607846en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85107762869&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/65320376/1_s2.0_S1746809421003141_main.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/108603
dc.identifier.urnURN:NBN:fi:aalto-202107017857
dc.language.isoenen
dc.publisherElsevier BV
dc.relation.ispartofseriesBIOMEDICAL SIGNAL PROCESSING AND CONTROLen
dc.relation.ispartofseriesVolume 68en
dc.rightsopenAccessen
dc.subject.keyword1D biomedical signalsen_US
dc.subject.keywordCOVID-19en_US
dc.subject.keywordHealthcareen_US
dc.subject.keywordImage processingen_US
dc.subject.keywordInternet of Things (IoT)en_US
dc.subject.keywordOntologyen_US
dc.subject.keywordRemote monitoringen_US
dc.titleA smart ontology-based IoT framework for remote patient monitoringen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files